Projects per year
Abstract
A population of binary black hole mergers has now been observed in gravitational waves by Advanced LIGO and Virgo. The masses of these black holes appear to show evidence for a pileup between 30 and 45 M o and a cutoff above ∼45 M o. One possible explanation for such a pileup and subsequent cutoff are pulsational pair-instability supernovae (PPISNe) and pair-instability supernovae (PISNe) in massive stars. We investigate the plausibility of this explanation in the context of isolated massive binaries. We study a population of massive binaries using the rapid population synthesis software COMPAS, incorporating models for PPISNe and PISNe. Our models predict a maximum black hole mass of 40 M o. We expect ∼10% of all binary black hole mergers at redshift z = 0 will include at least one component that went through a PPISN (with mass 30-40 M o), constituting ∼20%-50% of binary black hole mergers observed during the first two observing runs of Advanced LIGO and Virgo. Empirical models based on fitting the gravitational-wave mass measurements to a combination of a power law and a Gaussian find a fraction too large to be associated with PPISNe in our models. The rates of PPISNe and PISNe track the low metallicity star formation rate, increasing out to redshift z = 2. These predictions may be tested both with future gravitational-wave observations and with observations of superluminous supernovae.
Original language | English |
---|---|
Article number | 121 |
Number of pages | 15 |
Journal | The Astrophysical Journal |
Volume | 882 |
Issue number | 2 |
DOIs | |
Publication status | Published - 10 Sept 2019 |
Projects
- 1 Finished
-
ARC Centre of Excellence for Gravitational Wave Discovery
Bailes, M., McClelland, D. E., Levin, Y., Blair, D. G., Scott, S. M., Ottaway, D. J., Melatos, A., Veitch, P. J., Wen, L., Shaddock, D. A., Slagmolen, B. J. J., Zhao, C., Evans, R. J., Ju, L., Galloway, D., Thrane, E., Hurley, J. R., Coward, D. M., Cooke, J., Couch, W., Hobbs, G. B., Reitze, D., Rowan, S., Cai, R., Adhikari, R. X., Danzmann, K., Mavalvala, N., Kulkarni, S. R., Kramer, M., Branchesi, M., Gehrels, N., Weinstein, A. J. R., Steeghs, D., Bock, D. & Lasky, P.
Monash University – Internal University Contribution, Monash University – Internal Department Contribution
1/01/17 → 31/03/24
Project: Research