The impact of automated feature selection techniques on the interpretation of defect models

Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Christoph Treude

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The interpretation of defect models heavily relies on software metrics that are used to construct them. Prior work often uses feature selection techniques to remove metrics that are correlated and irrelevant in order to improve model performance. Yet, conclusions that are derived from defect models may be inconsistent if the selected metrics are inconsistent and correlated. In this paper, we systematically investigate 12 automated feature selection techniques with respect to the consistency, correlation, performance, computational cost, and the impact on the interpretation dimensions. Through an empirical investigation of 14 publicly-available defect datasets, we find that (1) 94–100% of the selected metrics are inconsistent among the studied techniques; (2) 37–90% of the selected metrics are inconsistent among training samples; (3) 0–68% of the selected metrics are inconsistent when the feature selection techniques are applied repeatedly; (4) 5–100% of the produced subsets of metrics contain highly correlated metrics; and (5) while the most important metrics are inconsistent among correlation threshold values, such inconsistent most important metrics are highly-correlated with the Spearman correlation of 0.85–1. Since we find that the subsets of metrics produced by the commonly-used feature selection techniques (except for AutoSpearman) are often inconsistent and correlated, these techniques should be avoided when interpreting defect models. In addition to introducing AutoSpearman which mitigates correlated metrics better than commonly-used feature selection techniques, this paper opens up new research avenues in the automated selection of features for defect models to optimise for interpretability as well as performance.

Original languageEnglish
Pages (from-to)3590–3638
Number of pages49
JournalEmpirical Software Engineering
Volume25
DOIs
Publication statusPublished - 1 Aug 2020

Keywords

  • Defect prediction
  • Feature selection
  • Model interpretation
  • Software analytics

Cite this