The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling

Research output: Contribution to journalArticleResearchpeer-review

Abstract

We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology.

Original languageEnglish
Pages (from-to)46-56
Number of pages11
JournalBiochemical Pharmacology
Volume117
DOIs
Publication statusPublished - 1 Oct 2016

Keywords

  • Adenosine
  • Adenosine A receptor
  • Bivalent agonist
  • Collagen
  • Fibroblasts

Cite this

@article{5a11b62e8cb14779a9b828e65d49fd4c,
title = "The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling",
abstract = "We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology.",
keywords = "Adenosine, Adenosine A receptor, Bivalent agonist, Collagen, Fibroblasts",
author = "Liz Vecchio and Chuo, {Chung Hui} and Jo-Anne Baltos and Leigh Ford and Scammells, {Peter J.} and Wang, {Bing H.} and Arthur Christopoulos and White, {Paul J.} and May, {Lauren T.}",
year = "2016",
month = "10",
day = "1",
doi = "10.1016/j.bcp.2016.08.007",
language = "English",
volume = "117",
pages = "46--56",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier",

}

The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. / Vecchio, Liz; Chuo, Chung Hui; Baltos, Jo-Anne; Ford, Leigh; Scammells, Peter J.; Wang, Bing H.; Christopoulos, Arthur; White, Paul J.; May, Lauren T.

In: Biochemical Pharmacology, Vol. 117, 01.10.2016, p. 46-56.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling

AU - Vecchio, Liz

AU - Chuo, Chung Hui

AU - Baltos, Jo-Anne

AU - Ford, Leigh

AU - Scammells, Peter J.

AU - Wang, Bing H.

AU - Christopoulos, Arthur

AU - White, Paul J.

AU - May, Lauren T.

PY - 2016/10/1

Y1 - 2016/10/1

N2 - We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology.

AB - We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology.

KW - Adenosine

KW - Adenosine A receptor

KW - Bivalent agonist

KW - Collagen

KW - Fibroblasts

UR - http://www.scopus.com/inward/record.url?scp=84987984863&partnerID=8YFLogxK

U2 - 10.1016/j.bcp.2016.08.007

DO - 10.1016/j.bcp.2016.08.007

M3 - Article

VL - 117

SP - 46

EP - 56

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

ER -