TY - JOUR
T1 - The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat
AU - Yan, Liuling
AU - Bhave, Mrinal
AU - Fairclough, Robert
AU - Konik, Christine
AU - Rahman, Sadequr
AU - Appels, Rudi
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2000
Y1 - 2000
N2 - Three genes encoding granule-bound starch synthase (wx-TmA, wx-TsB, and wx-TtD) have been isolated from Triticum monococcum (AA), and Triticum speltoides (BB), by the polymerase chain reaction (PCR) approach, and from Triticum tauschii (DD), by screening a genomic DNA library. Multiple sequence alignment indicated that the wx-TmA. wx-TsB, and wx-TtD genes had the same extron and (or) intron structure as the previously reported waxy gene from barley. The lengths of the three wx-TmA, wx-TsB, and wx-TtD genes were 2834 bp, 2826 bp, and 2893 bp, respectively, each covering 31 bp in the untranslated leader and the entire coding region consisting of 11 exons and 10 introns. The three genes had identical lengths of exons, except exon1, and shared over 95% identity with each other within the exon regions. The majority of introns were significantly variable in length and sequence, differing mainly in length (1-57 bp) as a result of insertion and (or) deletion events. The deduced amino acid sequence from these three genes indicated that the mature WX-TMA, -TSB, and -TTD proteins contained the same number of amino acids, but differed in predicted molecular weight and isoelectric point (pI) due to amino acid substitutions (13-18). The predicted physical characteristics of the WX proteins matched the respective proteins in wheat very closely, but the match was not perfect. Furthermore the exon5 sequences of the wx-TmA, wx-TsB, and wx-TtD genes were different from a cDNA encoding a waxy gene of common wheat previously reported. The striking difference was that an insertion of 11 amino acids occurred in the cDNA sequence that could not be observed in the exons of the A, B, and D genes. It was noted however, that the 3' end of intron4 of these genes could account for the additional 11 amino acids. The sequence information from the available waxy genes identified the intron4-exon5-intron5 region as being diagnostic for sequence variation in waxy. The sequence variation in the waxy genes provides the basis for primer design to distinguish the respective genes in common wheat, and its progenitors, using PCR.
AB - Three genes encoding granule-bound starch synthase (wx-TmA, wx-TsB, and wx-TtD) have been isolated from Triticum monococcum (AA), and Triticum speltoides (BB), by the polymerase chain reaction (PCR) approach, and from Triticum tauschii (DD), by screening a genomic DNA library. Multiple sequence alignment indicated that the wx-TmA. wx-TsB, and wx-TtD genes had the same extron and (or) intron structure as the previously reported waxy gene from barley. The lengths of the three wx-TmA, wx-TsB, and wx-TtD genes were 2834 bp, 2826 bp, and 2893 bp, respectively, each covering 31 bp in the untranslated leader and the entire coding region consisting of 11 exons and 10 introns. The three genes had identical lengths of exons, except exon1, and shared over 95% identity with each other within the exon regions. The majority of introns were significantly variable in length and sequence, differing mainly in length (1-57 bp) as a result of insertion and (or) deletion events. The deduced amino acid sequence from these three genes indicated that the mature WX-TMA, -TSB, and -TTD proteins contained the same number of amino acids, but differed in predicted molecular weight and isoelectric point (pI) due to amino acid substitutions (13-18). The predicted physical characteristics of the WX proteins matched the respective proteins in wheat very closely, but the match was not perfect. Furthermore the exon5 sequences of the wx-TmA, wx-TsB, and wx-TtD genes were different from a cDNA encoding a waxy gene of common wheat previously reported. The striking difference was that an insertion of 11 amino acids occurred in the cDNA sequence that could not be observed in the exons of the A, B, and D genes. It was noted however, that the 3' end of intron4 of these genes could account for the additional 11 amino acids. The sequence information from the available waxy genes identified the intron4-exon5-intron5 region as being diagnostic for sequence variation in waxy. The sequence variation in the waxy genes provides the basis for primer design to distinguish the respective genes in common wheat, and its progenitors, using PCR.
KW - Angiosperms
KW - Granule-bound starch synthase
KW - Molecular evolution
KW - Poaceae
KW - Polymerase chain reaction (PCR)
KW - Triticeae
KW - Triticum monococcum
KW - Triticum speltoides
KW - Triticum tauschii
UR - http://www.scopus.com/inward/record.url?scp=0034088743&partnerID=8YFLogxK
U2 - 10.1139/g99-117
DO - 10.1139/g99-117
M3 - Article
C2 - 10791814
AN - SCOPUS:0034088743
SN - 0831-2796
VL - 43
SP - 264
EP - 272
JO - Genome
JF - Genome
IS - 2
ER -