Abstract
The no-touch bipolar radiofrequency ablation (RFA) for cancer treatment is advantageous primarily because of its capability to prevent tumour track seeding (TTS). In this technique, the RF probes are placed at a distance (no-touch gap) away from the tumour boundary. Ideally, the RF probes should be placed sufficiently far from the tumour in order to avoid TTS. However, having a gap that is too large can lead to ineffective ablation. This paper investigates how the selection of the no-touch gap can affect the tissue electrical and thermal responses during the no-touch bipolar RFA treatment. Simulations were carried out on a two compartment model using the finite element method. Results obtained indicated that a gap that is too large may lead to incomplete ablation and failure to achieve significant ablation margin. However, keeping the gap to be too small may not be clinically practical. It was suggested that the incomplete ablation and the insufficient ablation margin observed in some of the cases may require the placement of additional probes around the tumour. The present study stresses on the importance of identifying the optimal no-touch gap that can avoid TTS without compromising the treatment outcome.
Original language | English |
---|---|
Pages (from-to) | 134-147 |
Number of pages | 14 |
Journal | Applied Mathematical Modelling |
Volume | 78 |
DOIs | |
Publication status | Published - Feb 2020 |
Keywords
- Bipolar RFA
- Cancer treatment
- Interelectrode distance
- Joule heating
- Thermal coagulation