The effects of temperature and pressure on the oxidation state of chromium in silicate melts

Andrew J. Berry, Hugh St C. O’Neill, Garry J. Foran

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)


The oxidation state of Cr, Cr2+/ΣCr (where ΣCr = Cr2+ + Cr3+ = 0.35 wt%), in Fe-free silicate glasses quenched from melts equilibrated as a function of pressure to 3.5 GPa at 1500 °C, and as a function of temperature to 1500 °C at atmospheric pressure, and at oxygen fugacities (fO2, in log units relative to the quartz-fayalite-magnetite (QFM) buffer) between ∆QFM = − 1 and − 2, was determined by XANES spectroscopy. Increasing temperature stabilises Cr2+ and increasing pressure stabilises Cr3+. A general expression for Cr3+/Cr2+ in silicate melts was derived: log(Cr3+/Cr2+) = 1/4(∆QFM + 8.58 − 25,050/T + 940P/T − 0.02P) + 9770/T − 7.69 + 6.22Λ + (900P − 172P2)/T, where P is pressure in GPa, T is temperature in K, and Λ is the optical basicity of the composition. This equation reproduces 213 Cr2+/ΣCr values reported here and in the literature with an average ΔCr2+/ΣCr of 0.02. A MORB melt at 1400 °C and QFM is predicted to have Cr2+/ΣCr ~ 0.35 at the surface but Cr2+/ΣCr ~ 0 at a depth of ~ 60 km. Although Cr2+ is an important oxidation state in silicate melts it is not preserved at low temperatures due to an electron exchange reaction with Fe3+.

Original languageEnglish
Article number40
Number of pages14
JournalContributions of Mineralogy and Petrology
Issue number5
Publication statusPublished - May 2021
Externally publishedYes


  • Chromitite
  • Chromium
  • Oxidation state
  • Oxygen fugacity
  • Silicate melt
  • XANES spectroscopy

Cite this