Projects per year
Abstract
We investigate the impact of uncertainty in the metallicity-specific star formation rate over cosmic time on predictions of the rates and masses of double compact object mergers observable through gravitational waves. We find that this uncertainty can change the predicted detectable merger rate by more than an order of magnitude, comparable to contributions from uncertain physical assumptions regarding binary evolution, such as mass transfer efficiency or supernova kicks. We statistically compare the results produced by the COMPAS population synthesis suite against a catalogue of gravitational-wave detections from the first two Advanced LIGO and Virgo observing runs. We find that the rate and chirp mass of observed binary black hole mergers can be well matched under our default evolutionary model with a star formation metallicity spread of 0.39 dex around a mean metallicity 〈Z〉 that scales with redshift z as 〈Z〉 = 0.035 × 10−0.23z, assuming a star formation rate of 0.01 × (1 + z)2.77/(1 + ((1 + z)/2.9)4.7) M☉ Mpc−3 yr−1. Intriguingly, this default model predicts that 80 per cent of the approximately one binary black hole merger per day that will be detectable at design sensitivity will have formed through isolated binary evolution with only dynamically stable mass transfer, i.e. without experiencing a common-envelope event.
Original language | English |
---|---|
Pages (from-to) | 3740-3759 |
Number of pages | 20 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 490 |
Issue number | 3 |
DOIs | |
Publication status | Published - Dec 2019 |
Keywords
- (stars:) binaries: general
- Galaxies: star formation
- Gravitational waves
- Stars: massive
Projects
- 1 Finished
-
ARC Centre of Excellence for Gravitational Wave Discovery
Bailes, M., McClelland, D. E., Levin, Y., Blair, D. G., Scott, S. M., Ottaway, D. J., Melatos, A., Veitch, P. J., Wen, L., Shaddock, D. A., Slagmolen, B. J. J., Zhao, C., Evans, R. J., Ju, L., Galloway, D., Thrane, E., Hurley, J. R., Coward, D. M., Cooke, J., Couch, W., Hobbs, G. B., Reitze, D., Rowan, S., Cai, R., Adhikari, R. X., Danzmann, K., Mavalvala, N., Kulkarni, S. R., Kramer, M., Branchesi, M., Gehrels, N., Weinstein, A. J. R., Steeghs, D., Bock, D. & Lasky, P.
Monash University – Internal University Contribution, Monash University – Internal Department Contribution
1/01/17 → 31/03/24
Project: Research