TY - JOUR
T1 - The Effect of Exogenous Sex Steroids on the Vaginal Microbiota
T2 - A Systematic Review
AU - Ratten, Larissa K.
AU - Plummer, Erica L.
AU - Bradshaw, Catriona S.
AU - Fairley, Christopher K.
AU - Murray, Gerald L.
AU - Garland, Suzanne M.
AU - Bateson, Deborah
AU - Tachedjian, Gilda
AU - Masson, Lindi
AU - Vodstrcil, Lenka A.
N1 - Funding Information:
EP is supported by an Australian Government Research Training Program Scholarship. CF, CB, and SG are supported by Australian NHMRC Leadership Investigator Grants (GNT1172900, GNT1173361, and APP1197951, respectively). GT was supported by NHMRC Senior Research Fellowship (GNT1117748) and NHMRC Project Grant (GNT1164982).
Publisher Copyright:
Copyright © 2021 Ratten, Plummer, Bradshaw, Fairley, Murray, Garland, Bateson, Tachedjian, Masson and Vodstrcil.
PY - 2021/11/12
Y1 - 2021/11/12
N2 - Background: Exogenous sex steroids within hormonal contraception and menopausal hormone therapy (MHT) have been used for family planning and management of menopausal symptoms, without consideration of their effects on the vaginal microbiota. This is largely because their use predates our understanding of the importance of the vaginal microbiome on human health. We conducted a systematic review (PROSPERO: CRD42018107730) to determine the influence of exogenous sex steroids, stratified by oestrogen-containing or progestin-only types of contraception, and MHT on the vaginal microbiome, as measured by molecular methods. Methods: Embase, PubMed and Medline were searched for relevant literature published through to December 1st 2020. Eligible studies reported on the effect of specific exogenous sex steroids on the vaginal microbiome using a molecular method. Data regarding the ‘positive’, ‘negative’ or ‘neutral’ effect of each type of contraceptive or MHT on the vaginal microbiome was extracted and summarised. A positive effect reflected sex steroid exposure that was associated with increased abundance of lactobacilli, a change to, or maintenance of, an optimal vaginal microbiota composition, or a decrease in bacterial diversity (specifically reflecting a low-diversity optimal microbiota state), relative to the control group. An exogenous sex steroid was designated as having a negative effect on the vaginal microbiome if it resulted in opposing effects (i.e. loss of lactobacilli, a non-optimal microbiota state). When no significant change was found, this was considered neutral/inconclusive. Results: We identified 29 manuscripts reporting on the effect of exogenous sex steroids on the vaginal microbiome; 25 investigating hormonal contraceptives, and 4 investigating MHT. Oestrogen-containing contraception, particularly reflecting the combined oestrogen and progestin-containing contraceptive pill, had a positive effect on the composition of the vaginal microbiota. Progestin-only contraception, particularly reflecting depo-medroxyprogesterone acetate, had mixed effects on the microbiota. Among post-menopausal women using MHT, exogenous oestrogen applied topically was associated with increased prevalence of lactobacilli. Conclusion: Our findings suggest that oestrogen-containing compounds may promote an optimal vaginal microbiota, which could have clinical applications. The impact of progestin-only contraceptives on the vaginal microbiota is less clear; more data is needed to determine how progestin-only contraceptives contribute to adverse reproductive and sexual health outcomes.
AB - Background: Exogenous sex steroids within hormonal contraception and menopausal hormone therapy (MHT) have been used for family planning and management of menopausal symptoms, without consideration of their effects on the vaginal microbiota. This is largely because their use predates our understanding of the importance of the vaginal microbiome on human health. We conducted a systematic review (PROSPERO: CRD42018107730) to determine the influence of exogenous sex steroids, stratified by oestrogen-containing or progestin-only types of contraception, and MHT on the vaginal microbiome, as measured by molecular methods. Methods: Embase, PubMed and Medline were searched for relevant literature published through to December 1st 2020. Eligible studies reported on the effect of specific exogenous sex steroids on the vaginal microbiome using a molecular method. Data regarding the ‘positive’, ‘negative’ or ‘neutral’ effect of each type of contraceptive or MHT on the vaginal microbiome was extracted and summarised. A positive effect reflected sex steroid exposure that was associated with increased abundance of lactobacilli, a change to, or maintenance of, an optimal vaginal microbiota composition, or a decrease in bacterial diversity (specifically reflecting a low-diversity optimal microbiota state), relative to the control group. An exogenous sex steroid was designated as having a negative effect on the vaginal microbiome if it resulted in opposing effects (i.e. loss of lactobacilli, a non-optimal microbiota state). When no significant change was found, this was considered neutral/inconclusive. Results: We identified 29 manuscripts reporting on the effect of exogenous sex steroids on the vaginal microbiome; 25 investigating hormonal contraceptives, and 4 investigating MHT. Oestrogen-containing contraception, particularly reflecting the combined oestrogen and progestin-containing contraceptive pill, had a positive effect on the composition of the vaginal microbiota. Progestin-only contraception, particularly reflecting depo-medroxyprogesterone acetate, had mixed effects on the microbiota. Among post-menopausal women using MHT, exogenous oestrogen applied topically was associated with increased prevalence of lactobacilli. Conclusion: Our findings suggest that oestrogen-containing compounds may promote an optimal vaginal microbiota, which could have clinical applications. The impact of progestin-only contraceptives on the vaginal microbiota is less clear; more data is needed to determine how progestin-only contraceptives contribute to adverse reproductive and sexual health outcomes.
KW - Gardnerella vaginalis
KW - hormonal contraceptives
KW - lactobacillus
KW - menopausal hormone therapy
KW - oestrogen
KW - progesterone
KW - progestin
KW - vaginal microbiota
UR - http://www.scopus.com/inward/record.url?scp=85120416796&partnerID=8YFLogxK
U2 - 10.3389/fcimb.2021.732423
DO - 10.3389/fcimb.2021.732423
M3 - Article
C2 - 34869054
AN - SCOPUS:85120416796
SN - 2235-2988
VL - 11
JO - Frontiers in Cellular and Infection Microbiology
JF - Frontiers in Cellular and Infection Microbiology
M1 - 732423
ER -