The disruption of Saccharomyces cerevisiae cells and release of glucose 6-phosphate dehydrogenase (G6PDH) in a horizontal dyno bead mill operated in continuous recycling mode

Chow Yen Mei, Tey Beng Ti, Mohammad Nordin Ibrahim, Arbakariya Ariff, Ling Tau Chuan

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)

Abstract

Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to 50% (w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of 20% (ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to 85% (v/v). Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than 20% (w/v) and 10 m/s, respectively.

Original languageEnglish
Pages (from-to)284-288
Number of pages5
JournalBiotechnology and Bioprocess Engineering
Volume10
Issue number3
DOIs
Publication statusPublished - 2005
Externally publishedYes

Keywords

  • Cell disruption
  • Dyno bead mill
  • Glucose 6-phosphate dehydrogenase
  • Yeast cells
  • Zirconia beads

Cite this