The cyclic nitroxide antioxidant 4-methoxy-TEMPO decreases mycobacterial burden in vivo through host and bacterial targets

Harrison D. Black, Wenbo Xu, Elinor Hortle, Sonia I. Robertson, Warwick J. Britton, Amandeep Kaur, Elizabeth J. New, Paul K. Witting, Belal Chami, Stefan H. Oehlers

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

Tuberculosis is a chronic inflammatory disease caused by persistent infection with Mycobacterium tuberculosis. The rise of antibiotic resistant strains necessitates the design of novel treatments. Recent evidence shows that not only is M. tuberculosis highly resistant to oxidative killing, it also co-opts host oxidant production to induce phagocyte death facilitating bacterial dissemination. We have targeted this redox environment with the cyclic nitroxide derivative 4-methoxy-TEMPO (MetT) in the zebrafish-M. marinum infection model. MetT inhibited the production of mitochondrial ROS and decreased infection-induced cell death to aid containment of infection. We identify a second mechanism of action whereby stress conditions, including hypoxia, found in the infection microenvironment appear to sensitise M. marinum to killing by MetT both in vitro and in vivo. Together, our study demonstrates MetT inhibited the growth and dissemination of M. marinum through host and bacterial targets.

Original languageEnglish
Pages (from-to)157-166
Number of pages10
JournalFree Radical Biology and Medicine
Volume135
DOIs
Publication statusPublished - 1 May 2019
Externally publishedYes

Keywords

  • Antioxidant
  • Cell death
  • Host-directed therapy
  • Hypoxia
  • Infection
  • Mitochondria
  • Zebrafish

Cite this