The "chimeric" trapezius muscle and fasciocutaneous flap (dorsal scapular artery perforator flap): a new design for complex 3-dimensional defects

Warren Rozen, Carly Fox, James Chin Sek Leong, A Morsi

Research output: Contribution to journalArticleOther

Abstract

Multiple variations of the musculocutaneous trapezius flap have been described, each of which use a single composite musculocutaneous unit in their designs. The limitation of such designs is the ability to use the components in a 3-dimensional manner, with only 1 vector existing in the geometry of the musculocutaneous unit. METHODS: A review of the literature was undertaken with regard to designs of the musculocutaneous trapezius flap, and we present a new technique for flap design. With identification of individual perforators to each of the muscle and fasciocutaneous portions of the trapezius flap, the 2 components can act in a chimeric fashion, able to fill both a deep and complex 3-dimensional space while covering the wound with robust skin. RESULTS: A range of flap designs have been described, including transverse, oblique, and vertical skin paddles accompanying the trapezius muscle. We describe a technique with which a propeller-style skin paddle based on a cutaneous perforator can be raised in any orientation with respect to the underlying muscle. In a presented case, separation of the muscular and fasciocutaneous components of the trapezius flap was able to obliterate dead space around exposed cervicothoracic spinal metalwork and obtain robust wound closure in a patient with previous radiotherapy. CONCLUSIONS: This concomitant use of a muscle and fasciocutaneous perforator flap based on a single perforator, a so-called chimeric perforator flap, is a useful modification to trapezius musculocutaneous flap design.
Original languageEnglish
Pages (from-to)528 - 532
Number of pages5
JournalAnnals of Plastic Surgery
Volume71
Issue number5
DOIs
Publication statusPublished - 2013

Cite this

@article{92d0ce4dcef64a9b9b817f5c6318c853,
title = "The {"}chimeric{"} trapezius muscle and fasciocutaneous flap (dorsal scapular artery perforator flap): a new design for complex 3-dimensional defects",
abstract = "Multiple variations of the musculocutaneous trapezius flap have been described, each of which use a single composite musculocutaneous unit in their designs. The limitation of such designs is the ability to use the components in a 3-dimensional manner, with only 1 vector existing in the geometry of the musculocutaneous unit. METHODS: A review of the literature was undertaken with regard to designs of the musculocutaneous trapezius flap, and we present a new technique for flap design. With identification of individual perforators to each of the muscle and fasciocutaneous portions of the trapezius flap, the 2 components can act in a chimeric fashion, able to fill both a deep and complex 3-dimensional space while covering the wound with robust skin. RESULTS: A range of flap designs have been described, including transverse, oblique, and vertical skin paddles accompanying the trapezius muscle. We describe a technique with which a propeller-style skin paddle based on a cutaneous perforator can be raised in any orientation with respect to the underlying muscle. In a presented case, separation of the muscular and fasciocutaneous components of the trapezius flap was able to obliterate dead space around exposed cervicothoracic spinal metalwork and obtain robust wound closure in a patient with previous radiotherapy. CONCLUSIONS: This concomitant use of a muscle and fasciocutaneous perforator flap based on a single perforator, a so-called chimeric perforator flap, is a useful modification to trapezius musculocutaneous flap design.",
author = "Warren Rozen and Carly Fox and Leong, {James Chin Sek} and A Morsi",
year = "2013",
doi = "10.1097/SAP.0b013e31824e29a4",
language = "English",
volume = "71",
pages = "528 -- 532",
journal = "Annals of Plastic Surgery",
issn = "0148-7043",
publisher = "Lippincott Williams & Wilkins",
number = "5",

}

TY - JOUR

T1 - The "chimeric" trapezius muscle and fasciocutaneous flap (dorsal scapular artery perforator flap): a new design for complex 3-dimensional defects

AU - Rozen, Warren

AU - Fox, Carly

AU - Leong, James Chin Sek

AU - Morsi, A

PY - 2013

Y1 - 2013

N2 - Multiple variations of the musculocutaneous trapezius flap have been described, each of which use a single composite musculocutaneous unit in their designs. The limitation of such designs is the ability to use the components in a 3-dimensional manner, with only 1 vector existing in the geometry of the musculocutaneous unit. METHODS: A review of the literature was undertaken with regard to designs of the musculocutaneous trapezius flap, and we present a new technique for flap design. With identification of individual perforators to each of the muscle and fasciocutaneous portions of the trapezius flap, the 2 components can act in a chimeric fashion, able to fill both a deep and complex 3-dimensional space while covering the wound with robust skin. RESULTS: A range of flap designs have been described, including transverse, oblique, and vertical skin paddles accompanying the trapezius muscle. We describe a technique with which a propeller-style skin paddle based on a cutaneous perforator can be raised in any orientation with respect to the underlying muscle. In a presented case, separation of the muscular and fasciocutaneous components of the trapezius flap was able to obliterate dead space around exposed cervicothoracic spinal metalwork and obtain robust wound closure in a patient with previous radiotherapy. CONCLUSIONS: This concomitant use of a muscle and fasciocutaneous perforator flap based on a single perforator, a so-called chimeric perforator flap, is a useful modification to trapezius musculocutaneous flap design.

AB - Multiple variations of the musculocutaneous trapezius flap have been described, each of which use a single composite musculocutaneous unit in their designs. The limitation of such designs is the ability to use the components in a 3-dimensional manner, with only 1 vector existing in the geometry of the musculocutaneous unit. METHODS: A review of the literature was undertaken with regard to designs of the musculocutaneous trapezius flap, and we present a new technique for flap design. With identification of individual perforators to each of the muscle and fasciocutaneous portions of the trapezius flap, the 2 components can act in a chimeric fashion, able to fill both a deep and complex 3-dimensional space while covering the wound with robust skin. RESULTS: A range of flap designs have been described, including transverse, oblique, and vertical skin paddles accompanying the trapezius muscle. We describe a technique with which a propeller-style skin paddle based on a cutaneous perforator can be raised in any orientation with respect to the underlying muscle. In a presented case, separation of the muscular and fasciocutaneous components of the trapezius flap was able to obliterate dead space around exposed cervicothoracic spinal metalwork and obtain robust wound closure in a patient with previous radiotherapy. CONCLUSIONS: This concomitant use of a muscle and fasciocutaneous perforator flap based on a single perforator, a so-called chimeric perforator flap, is a useful modification to trapezius musculocutaneous flap design.

U2 - 10.1097/SAP.0b013e31824e29a4

DO - 10.1097/SAP.0b013e31824e29a4

M3 - Article

VL - 71

SP - 528

EP - 532

JO - Annals of Plastic Surgery

JF - Annals of Plastic Surgery

SN - 0148-7043

IS - 5

ER -