TY - JOUR
T1 - The CBD mortality indexes
T2 - modeling and applications
AU - Chan, Wai Sum
AU - Li, Johnny Siu-Hang
AU - Li, Jackie
N1 - Funding Information:
The authors gratefully acknowledge financial support from SCOR on the Asia-Pacific longevity project, from which this article is extracted. This longevity project has been implemented under the Insurance Risk and Finance Research Centre at Nanyang Business School, Singapore.
PY - 2014/1
Y1 - 2014/1
N2 - Most extrapolative stochastic mortality models are constructed in a similar manner. Specifically, when they are fitted to historical data, one or more series of time-varying parameters are identified. By extrapolating these parameters to the future, we can obtain a forecast of death probabilities and consequently cash flows arising from life contingent liabilities. In this article, we first argue that, among various time-varying model parameters, those encompassed in the Cairns-Blake-Dowd (CBD) model (also known as Model M5) are most suitably used as indexes to indicate levels of longevity risk at different time points. We then investigate how these indexes can be jointly modeled with a more general class of multivariate time-series models, instead of a simple random walk that takes no account of cross-correlations. Finally, we study the joint prediction region for the mortality indexes. Such a region, as we demonstrate, can serve as a graphical longevity risk metric, allowing practitioners to compare the longevity risk exposures of different portfolios readily.
AB - Most extrapolative stochastic mortality models are constructed in a similar manner. Specifically, when they are fitted to historical data, one or more series of time-varying parameters are identified. By extrapolating these parameters to the future, we can obtain a forecast of death probabilities and consequently cash flows arising from life contingent liabilities. In this article, we first argue that, among various time-varying model parameters, those encompassed in the Cairns-Blake-Dowd (CBD) model (also known as Model M5) are most suitably used as indexes to indicate levels of longevity risk at different time points. We then investigate how these indexes can be jointly modeled with a more general class of multivariate time-series models, instead of a simple random walk that takes no account of cross-correlations. Finally, we study the joint prediction region for the mortality indexes. Such a region, as we demonstrate, can serve as a graphical longevity risk metric, allowing practitioners to compare the longevity risk exposures of different portfolios readily.
UR - http://www.scopus.com/inward/record.url?scp=84896317902&partnerID=8YFLogxK
U2 - 10.1080/10920277.2013.854161
DO - 10.1080/10920277.2013.854161
M3 - Article
AN - SCOPUS:84896317902
SN - 1092-0277
VL - 18
SP - 38
EP - 58
JO - North American Actuarial Journal
JF - North American Actuarial Journal
IS - 1
ER -