The batched stepped wedge design: A design robust to delays in cluster recruitment

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

Stepped wedge designs are an increasingly popular variant of longitudinal cluster randomized trial designs, and roll out interventions across clusters in a randomized, but step-wise fashion. In the standard stepped wedge design, assumptions regarding the effect of time on outcomes may require that all clusters start and end trial participation at the same time. This would require ethics approvals and data collection procedures to be in place in all clusters before a stepped wedge trial can start in any cluster. Hence, although stepped wedge designs are useful for testing the impacts of many cluster-based interventions on outcomes, there can be lengthy delays before a trial can commence. In this article, we introduce “batched” stepped wedge designs. Batched stepped wedge designs allow clusters to commence the study in batches, instead of all at once, allowing for staggered cluster recruitment. Like the stepped wedge, the batched stepped wedge rolls out the intervention to all clusters in a randomized and step-wise fashion: a series of self-contained stepped wedge designs. Provided that separate period effects are included for each batch, software for standard stepped wedge sample size calculations can be used. With this time parameterization, in many situations including when linear models are assumed, sample size calculations reduce to the setting of a single stepped wedge design with multiple clusters per sequence. In these situations, sample size calculations will not depend on the delays between the commencement of batches. Hence, the power of batched stepped wedge designs is robust to unexpected delays between batches.

Original languageEnglish
Pages (from-to)3627-3641
Number of pages15
JournalStatistics in Medicine
Volume41
Issue number18
DOIs
Publication statusPublished - 15 Aug 2022

Keywords

  • cluster randomized trial
  • intracluster correlation
  • sample size calculation
  • within-cluster correlation structure

Cite this