The asymmetric gradient discretisation method

J. Droniou, Robert Eymard

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

2 Citations (Scopus)

Abstract

An asymmetric version of the gradient discretisation method is developed for linear anisotropic elliptic equations. Error estimates and convergence are proved for this method, which is showed to cover all finite volume methods.

Original languageEnglish
Title of host publicationFinite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017
EditorsClément Cancès, Pascal Omnes
Place of PublicationCham Switzerland
PublisherSpringer
Pages311-319
Number of pages9
Volume199
ISBN (Electronic)9783319573977
ISBN (Print)9783319573960
DOIs
Publication statusPublished - 2017
EventFinite Volumes for Complex Applications 2017 - Université Lille 1, Lille, France
Duration: 12 Jun 201716 Jun 2017
Conference number: 8th
https://indico.math.cnrs.fr/event/1299/overview

Publication series

NameSpringer Proceedings in Mathematics & Statistics
PublisherSpringer International Publishing
Volume199
ISSN (Print)2194-1009
ISSN (Electronic)2194-1017

Conference

ConferenceFinite Volumes for Complex Applications 2017
Abbreviated titleFVCA 8
CountryFrance
CityLille
Period12/06/1716/06/17
OtherTheme = Hyperbolic, Elliptic and Parabolic Problems
Internet address

Keywords

  • Convergence analysis
  • Error estimates
  • Finite volume methods
  • Gradient discretisation method
  • Gradient scheme

Cite this

Droniou, J., & Eymard, R. (2017). The asymmetric gradient discretisation method. In C. Cancès, & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017 (Vol. 199, pp. 311-319). (Springer Proceedings in Mathematics & Statistics; Vol. 199). Cham Switzerland: Springer. https://doi.org/10.1007/978-3-319-57397-7_24
Droniou, J. ; Eymard, Robert. / The asymmetric gradient discretisation method. Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017. editor / Clément Cancès ; Pascal Omnes. Vol. 199 Cham Switzerland : Springer, 2017. pp. 311-319 (Springer Proceedings in Mathematics & Statistics).
@inproceedings{2ebe6b27d31a439ab6f31e63dc7fd343,
title = "The asymmetric gradient discretisation method",
abstract = "An asymmetric version of the gradient discretisation method is developed for linear anisotropic elliptic equations. Error estimates and convergence are proved for this method, which is showed to cover all finite volume methods.",
keywords = "Convergence analysis, Error estimates, Finite volume methods, Gradient discretisation method, Gradient scheme",
author = "J. Droniou and Robert Eymard",
year = "2017",
doi = "10.1007/978-3-319-57397-7_24",
language = "English",
isbn = "9783319573960",
volume = "199",
series = "Springer Proceedings in Mathematics & Statistics",
publisher = "Springer",
pages = "311--319",
editor = "Cl{\'e}ment Canc{\`e}s and Pascal Omnes",
booktitle = "Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017",

}

Droniou, J & Eymard, R 2017, The asymmetric gradient discretisation method. in C Cancès & P Omnes (eds), Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017. vol. 199, Springer Proceedings in Mathematics & Statistics, vol. 199, Springer, Cham Switzerland, pp. 311-319, Finite Volumes for Complex Applications 2017, Lille, France, 12/06/17. https://doi.org/10.1007/978-3-319-57397-7_24

The asymmetric gradient discretisation method. / Droniou, J.; Eymard, Robert.

Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017. ed. / Clément Cancès; Pascal Omnes. Vol. 199 Cham Switzerland : Springer, 2017. p. 311-319 (Springer Proceedings in Mathematics & Statistics; Vol. 199).

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

TY - GEN

T1 - The asymmetric gradient discretisation method

AU - Droniou, J.

AU - Eymard, Robert

PY - 2017

Y1 - 2017

N2 - An asymmetric version of the gradient discretisation method is developed for linear anisotropic elliptic equations. Error estimates and convergence are proved for this method, which is showed to cover all finite volume methods.

AB - An asymmetric version of the gradient discretisation method is developed for linear anisotropic elliptic equations. Error estimates and convergence are proved for this method, which is showed to cover all finite volume methods.

KW - Convergence analysis

KW - Error estimates

KW - Finite volume methods

KW - Gradient discretisation method

KW - Gradient scheme

UR - http://www.scopus.com/inward/record.url?scp=85020450733&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-57397-7_24

DO - 10.1007/978-3-319-57397-7_24

M3 - Conference Paper

SN - 9783319573960

VL - 199

T3 - Springer Proceedings in Mathematics & Statistics

SP - 311

EP - 319

BT - Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017

A2 - Cancès, Clément

A2 - Omnes, Pascal

PB - Springer

CY - Cham Switzerland

ER -

Droniou J, Eymard R. The asymmetric gradient discretisation method. In Cancès C, Omnes P, editors, Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects - FVCA8 2017. Vol. 199. Cham Switzerland: Springer. 2017. p. 311-319. (Springer Proceedings in Mathematics & Statistics). https://doi.org/10.1007/978-3-319-57397-7_24