Projects per year
Abstract
Purpose of Review: To critically appraise literature on recent advances and methods using “big data” to evaluate stroke outcomes and associated factors. Recent Findings: Recent big data studies provided new evidence on the incidence of stroke outcomes, and important emerging predictors of these outcomes. Main highlights included the identification of COVID-19 infection and exposure to a low-dose particulate matter as emerging predictors of mortality post-stroke. Demographic (age, sex) and geographical (rural vs. urban) disparities in outcomes were also identified. There was a surge in methodological (e.g., machine learning and validation) studies aimed at maximizing the efficiency of big data for improving the prediction of stroke outcomes. However, considerable delays remain between data generation and publication. Summary: Big data are driving rapid innovations in research of stroke outcomes, generating novel evidence for bridging practice gaps. Opportunity exists to harness big data to drive real-time improvements in stroke outcomes.
Original language | English |
---|---|
Pages (from-to) | 151-160 |
Number of pages | 10 |
Journal | Current Neurology and Neuroscience Reports |
Volume | 22 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2022 |
Keywords
- Big data
- Machine learning
- Mortality
- Outcomes
- Stroke
- Validation studies
-
NHMRC Research Fellowship
National Health and Medical Research Council (NHMRC) (Australia)
1/01/07 → 31/12/18
Project: Research