The activin receptor-like kinase 6 Booroola mutation enhances suppressive effects of bone morphogenetic protein 2 (BMP2), BMP4, BMP6 and growth and differentiation factor-9 on FSH release from ovine primary pituitary cell cultures

Julia Young, Jennifer Juengel, Kenneth Dodds, Mhairi Laird, Peter Dearden, Alan McNeilly, K McNatty, Theresa Wilson

Research output: Contribution to journalArticleResearchpeer-review

20 Citations (Scopus)


Bone morphogenetic proteins (BMPs) have been shown to influence the regulation of FSH synthesis and secretion at the level of the pituitary. Primary pituitary cells were harvested and cultured from Booroola ewes homozygous for a mutation in activin receptor-like kinase 6 (ALK6) also known as BMP receptor IB (BMPRIB), and from wild-type (WT) ewes to determine if the mutation caused alterations in FSH secretion in vitro. The cells were collected 24 h following induction of luteolysis and cultured for 72 h prior to being challenged for 24 h with BMP2, BMP4, BMP6, growth and differentiation factor-9 (GDF9), transforming growth factor-beta 1, activin-A and GnRH. The levels of FSH and LH were measured by RIA and then compared with the untreated controls. Primary pituitary cell cultures from Booroola ewes secreted less FSH than WT cells in the presence of BMP2, BMP4 and BMP6. These BMPs did not affect the FSH stores within the cells, or the levels of LH released. GDF9 appeared to act in a BMP-like manner by suppressing FSH secretion. The ALK6 receptor however, was not found to co-localise with gonadotroph cells in either Booroola or WT pituitary tissues. These findings imply that the increased sensitivity of Booroola cells to BMP2, BMP4, BMP6 and GDF9 cannot be due to the direct action of the ALK6 mutant Booroola receptor in the cells that synthesise FSH.
Original languageEnglish
Pages (from-to)251 - 261
Number of pages11
JournalJournal of Endocrinology
Issue number2
Publication statusPublished - 2008
Externally publishedYes

Cite this