The ν8 band of C2HD3 by high-resolution synchrotron FTIR spectroscopy: Coriolis interactions between the v8 = 1 and v6 = 1 states

L L Ng, T L Tan, Luqman Akasyah, Andy Wong, Dominique R.T. Appadoo, Don McNaughton

Research output: Contribution to journalArticleResearchpeer-review

9 Citations (Scopus)


The synchrotron Fourier transform infrared (FTIR) spectrum of the ν8 band of ethylene-d3 (C2HD3) was measured at an unapodized resolution of 0.00096 cm−1 from 830 to 1010 cm−1. Rovibrational constants up to five quartic terms were derived with improved precision for the v8 = 1 state through the fitting of 1566 unperturbed infrared transitions using the Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.00044 cm−1. For the first time, 446 perturbed IR transitions of the ν8 band were fitted together with the 1566 unperturbed infrared transitions to obtain the a- and b-Coriolis resonance parameters from its interaction with the v6 = 1 state, with an rms deviation of 0.00039 cm−1. The IR lines of the ν6 band were too weak for detection. Three rotational constants, a quartic constant and band center of the v6 = 1 state were also derived for the first time in this work. Ground state rovibrational constants of C2HD3 up to five quartic constants were also derived from a fit of 906 ground state combination differences with an rms deviation of 0.00030 cm−1 from infrared transitions of the present analysis. The ground state rotational constants are in close agreement with theoretically calculated values using the cc-pVTZ basis set at CCSD(T), MP2 and B3LYP levels of theory. Alpha constants determined from the rotational constants of the v8 = 1 state derived from the perturbed IR fit compared favourably with those from anharmonic calculations.

Original languageEnglish
Pages (from-to)29-35
Number of pages7
JournalJournal of Molecular Spectroscopy
Publication statusPublished - 1 Oct 2017


  • CHD
  • Ethylene isotopologue
  • High-resolution FTIR spectroscopy
  • Rovibrational constants
  • Rovibrational structure

Cite this