Projects per year
Abstract
Federated Class-Incremental Learning (FCIL) is an underexplored yet pivotal issue, involving the dynamic addition of new classes in the context of federated learning. In this field, Data-Free Knowledge Transfer (DFKT) plays a crucial role in addressing catastrophic forgetting and data privacy problems. However, prior approaches lack the crucial synergy between DFKT and the model training phases, causing DFKT to encounter difficulties in generating high-quality data from a non-anchored latent space of the old task model. In this paper, we introduce LANDER (Label Text Centered Data-Free Knowledge Transfer) to address this issue by utilizing label text embeddings (LTE) produced by pretrained language models. Specifically, during the model training phase, our approach treats LTE as anchor points and constrains the feature embeddings of corresponding training samples around them, enriching the surrounding area with more meaningful information. In the DFKT phase, by using these LTE anchors, LANDER can synthesize more meaningful samples, thereby effectively addressing the forgetting problem. Additionally, instead of tightly constraining embeddings toward the anchor, the Bounding Loss is introduced to encourage sample embeddings to remain flexible within a defined radius. This approach preserves the natural differences in sample embeddings and mitigates the embedding overlap caused by heterogeneous federated settings. Extensive experiments conducted on CIFAR100, Tiny-ImageNet, and ImageNet demonstrate that LANDER significantly outperforms previous methods and achieves state-of-the-art performance in FCIL. The code is available at https://github.com/tmtuan1307/lander.
Original language | English |
---|---|
Title of host publication | Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 |
Editors | Eric Mortensen |
Place of Publication | Piscataway NJ USA |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 23870-23880 |
Number of pages | 11 |
ISBN (Electronic) | 9798350353006 |
ISBN (Print) | 9798350353013 |
DOIs | |
Publication status | Published - 2024 |
Event | IEEE Conference on Computer Vision and Pattern Recognition 2024 - Seattle, United States of America Duration: 17 Jun 2024 → 21 Jun 2024 https://openaccess.thecvf.com/CVPR2024 (Proceedings) https://cvpr.thecvf.com/Conferences/2024 (Website) https://ieeexplore.ieee.org/xpl/conhome/10654794/proceeding (Proceedings) |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition 2024 |
---|---|
Abbreviated title | CVPR 2024 |
Country/Territory | United States of America |
City | Seattle |
Period | 17/06/24 → 21/06/24 |
Internet address |
|
Keywords
- continual learning
- data-free knowledge distillation
- federated learning
- knowledge transfer
- text embedding
Projects
- 1 Active
-
Exploiting Geometries of Learning for Fast, Adaptive and Robust AI
Phung, D. (Primary Chief Investigator (PCI)), Tafazzoli Harandi, M. (Chief Investigator (CI)), Hartley, R. I. (Chief Investigator (CI)), Le, T. (Chief Investigator (CI)) & Koniusz, P. (Partner Investigator (PI))
ARC - Australian Research Council
8/05/23 → 7/05/26
Project: Research