TY - JOUR
T1 - Synthesis of information-bearing peptoids and their sequence-directed dynamic covalent self-assembly
AU - Leguizamon, Samuel C.
AU - Alqubati, Abdulla F.
AU - Scott, Timothy F.
PY - 2020/2
Y1 - 2020/2
N2 - This protocol presents the use of Lewis acidic multi-role reagents to circumvent kinetic trapping observed during the self-assembly of information-encoded oligomeric strands mediated by paired dynamic covalent interactions in a manner mimicking the thermal cycling commonly employed for the self-assembly of complementary nucleic acid sequences. Primary amine monomers bearing aldehyde and amine pendant moieties are functionalized with orthogonal protecting groups for use as dynamic covalent reactant pairs. Using a modified automated peptide synthesizer, the primary amine monomers are encoded into oligo(peptoid) strands through solid-phase submonomer synthesis. Upon purification by high-performance liquid chromatography (HPLC) and characterization by electrospray ionization mass spectrometry (ESI-MS), sequence-specific oligomers are subjected to high-loading of a Lewis acidic rare-earth metal triflate which both deprotects the aldehyde moieties and affects the reactant pair equilibrium such that strands completely dissociate. Subsequently, a fraction of the Lewis acid is extracted, enabling annealing of complementary sequence-specific strands to form information-encoded molecular ladders characterized by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). The simple procedure outlined in this report circumvents kinetic traps commonly experienced in the field of dynamic covalent assembly and serves as a platform for the future design of robust, complex architectures.
AB - This protocol presents the use of Lewis acidic multi-role reagents to circumvent kinetic trapping observed during the self-assembly of information-encoded oligomeric strands mediated by paired dynamic covalent interactions in a manner mimicking the thermal cycling commonly employed for the self-assembly of complementary nucleic acid sequences. Primary amine monomers bearing aldehyde and amine pendant moieties are functionalized with orthogonal protecting groups for use as dynamic covalent reactant pairs. Using a modified automated peptide synthesizer, the primary amine monomers are encoded into oligo(peptoid) strands through solid-phase submonomer synthesis. Upon purification by high-performance liquid chromatography (HPLC) and characterization by electrospray ionization mass spectrometry (ESI-MS), sequence-specific oligomers are subjected to high-loading of a Lewis acidic rare-earth metal triflate which both deprotects the aldehyde moieties and affects the reactant pair equilibrium such that strands completely dissociate. Subsequently, a fraction of the Lewis acid is extracted, enabling annealing of complementary sequence-specific strands to form information-encoded molecular ladders characterized by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). The simple procedure outlined in this report circumvents kinetic traps commonly experienced in the field of dynamic covalent assembly and serves as a platform for the future design of robust, complex architectures.
UR - http://www.scopus.com/inward/record.url?scp=85079912401&partnerID=8YFLogxK
U2 - 10.3791/60442
DO - 10.3791/60442
M3 - Article
C2 - 32090999
AN - SCOPUS:85079912401
SN - 1940-087X
VL - 2020
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 156
M1 - e60442
ER -