Synthesis and phosphate ester cleavage properties of copper(II) complexes of guanidinium-bridged bis(1,4,7-triazacyclononane) ligands

Linda Tjioe, Tanmaya Joshi, Bim Graham, Leone Spiccia

Research output: Contribution to journalArticleResearchpeer-review

6 Citations (Scopus)


The synthesis and characterization of three new bis(1,4,7-triazacyclononane) ligands, L1, L2and L3, featuring a bridging guanidinium group between two macrocyclic units, is reported. The corresponding binuclear copper(II) complexes have been studied as agents to accelerate the cleavage of P–O bonds within two model phosphodiesters, namely bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP). The results of a comparative study of cleavage rates, using the mononuclear copper(II)–tacn complexes bearing single alkylguanidinium groups as a reference, revealed that the binuclear copper(II) complexes are generally less effective cleavage agents, which may be related to a tendency to form hydrolytically inactive hydroxo-bridged species at near-neutral pH and above. However, at pH 7, these complexes produced 4–18-fold increases in the rate of BNPP hydrolysis compared to the parent complex, [Cu(tacn)(OH2)2]2+. Likewise, at pH 6, the complexes cleaved HPNP 5–130-fold faster than [Cu(tacn)(OH2)2]2+, suggesting some degree of cooperative interplay between the two proximal copper(II) centers and the protonated guanidinium bridging group in promoting phosphodiester hydrolysis under these conditions.

Original languageEnglish
Pages (from-to)11-17
Number of pages7
Publication statusPublished - 2016


  • 1,4,7-Triazacyclononane derivatives
  • Copper(II) complexes
  • Kinetic studies
  • Phosphate ester cleavage
  • Synthetic nucleases

Cite this