TY - JOUR
T1 - Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes
AU - Wiegand, Jennifer R.
AU - Smith, Zachary P.
AU - Liu, Qiang
AU - Patterson, Christopher T.
AU - Freeman, Benny D.
AU - Guo, Ruilan
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014/9/7
Y1 - 2014/9/7
N2 - Robust polymer membranes that are highly permeable and selective are desired for energy efficient gas separation processes. In this study, a series of rigid, bulky triptycene-based diamine monomers were designed, synthesized, and subsequently incorporated into the backbone of polyimides via polycondensation with 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) to obtain a series of polyimide membranes with high fractional free volume. These triptycene-containing polyimides with systematic variations in their chemical structure demonstrate the viability of the 'tunable' fractional free volume by introducing various substituents onto the polymer backbone. All the polyimides synthesized exhibited film-forming high molecular weight, high solubility, and excellent thermal properties, with glass transition temperatures ranging from 280 °C to 300 °C and thermal stability up to 500 °C. Compared to other classes of glassy polymers, these triptycene-polyimides had high combinations of permeability and selectivity, suggesting that a favorable free volume size distribution in these triptycene polyimides was induced by the unique chain packing mechanism of triptycene units. The correlation between gas transport properties and the polymer chemical structure was also investigated. Altering the size of the substituents neighboring the triptycene units provides greater opportunity to fine-tune the fractional free volume and free volume size distribution in the polymer, which in turn can change the transport properties effectively to meet various separation needs. It is expected that additional design modifications made by exploiting the chemistry versatility of the triptycene moiety and by selectively adding other components may improve these membranes to break the gas permeability-selectivity trade-off barrier. This journal is
AB - Robust polymer membranes that are highly permeable and selective are desired for energy efficient gas separation processes. In this study, a series of rigid, bulky triptycene-based diamine monomers were designed, synthesized, and subsequently incorporated into the backbone of polyimides via polycondensation with 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) to obtain a series of polyimide membranes with high fractional free volume. These triptycene-containing polyimides with systematic variations in their chemical structure demonstrate the viability of the 'tunable' fractional free volume by introducing various substituents onto the polymer backbone. All the polyimides synthesized exhibited film-forming high molecular weight, high solubility, and excellent thermal properties, with glass transition temperatures ranging from 280 °C to 300 °C and thermal stability up to 500 °C. Compared to other classes of glassy polymers, these triptycene-polyimides had high combinations of permeability and selectivity, suggesting that a favorable free volume size distribution in these triptycene polyimides was induced by the unique chain packing mechanism of triptycene units. The correlation between gas transport properties and the polymer chemical structure was also investigated. Altering the size of the substituents neighboring the triptycene units provides greater opportunity to fine-tune the fractional free volume and free volume size distribution in the polymer, which in turn can change the transport properties effectively to meet various separation needs. It is expected that additional design modifications made by exploiting the chemistry versatility of the triptycene moiety and by selectively adding other components may improve these membranes to break the gas permeability-selectivity trade-off barrier. This journal is
UR - http://www.scopus.com/inward/record.url?scp=84905179933&partnerID=8YFLogxK
U2 - 10.1039/c4ta02303j
DO - 10.1039/c4ta02303j
M3 - Article
AN - SCOPUS:84905179933
VL - 2
SP - 13309
EP - 13320
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
SN - 2050-7488
IS - 33
ER -