Surrogates for herbicide removal in stormwater biofilters

Kefeng Zhang, Ana Deletic, Declan Page, David Thomas McCarthy

Research output: Contribution to journalArticleResearchpeer-review

23 Citations (Scopus)

Abstract

Real time monitoring of suitable surrogate parameters are critical to the validation of any water treatment processes, and is of particularly high importance for validation of natural stormwater treatment systems. In this study, potential surrogates for herbicide removal in stormwater biofilters (also known as stormwater bio-retention or rain-gardens) were assessed using field challenge tests and matched laboratory column experiments. Differential UV absorbance at 254 mn (ΔUVA254), total phosphorus (ΔTP), dissolved phosphorus (ΔDP), total nitrogen (ΔTN), ammonia (ΔNH3), nitrate and nitrite (ΔNO3 + NO2), dissolved organic carbon (ΔDOC) and total suspended solids (ΔTSS) were compared with glyphosate, atrazine, simazine and prometryn removal rates. The influence of different challenge conditions on the performance of each surrogate was studied. Differential TP was significantly and linearly related to glyphosate reduction (R2 = 0.75–0.98, P < 0.01), while ΔTP and ΔUVA254 were linearly correlated (R2 = 0.44–0.84, P < 0.05) to the reduction of triazines (atrazine, simazine and prometryn) in both field and laboratory tests. The performance of ΔTP and ΔUVA254 as surrogates for herbicides were reliable under normal and challenge dry conditions, but weaker correlations were observed under challenge wet conditions. Of those tested, ΔTP is the most promising surrogate for glyphosate removal and ΔUVA254 is a suitable surrogate for triazines removal in stormwater biofilters
Original languageEnglish
Pages (from-to)64 - 71
Number of pages8
JournalWater Research
Volume81
DOIs
Publication statusPublished - 15 Sept 2015

Keywords

  • Stormwater biofilters
  • Treatment validation
  • Herbicides
  • Surrogate
  • Ultra-violet absorbance (UVA)
  • Phosphorus

Cite this