SUGGESTED MECHANISM FOR NONLINEAR WALL ROUGHNESS EFFECTS ON HIGH REYNOLDS NUMBER FLOW STABILITY.

Philip Hall, F. T. Smith

Research output: Contribution to journalArticleResearchpeer-review

15 Citations (Scopus)

Abstract

The interactions between an uneven wall and free stream unsteadiness and their resultant nonlinear influence on flow stability are considered by means of a related model problem concerning the nonlinear stability of streaming flow past a moving wavy wall. The particular streaming flows studied are plane Poiseuille flow and attached boundary-layer flow, and the theory is presented for the high Reynolds number regime in each case. That regime can permit inter alia much more analytical and physical understanding to be obtained than the finite Reynolds number regime; this may be at the expense of some loss of real application, but not necessarily so, as the present study shows. The fundamental differences found between the forced nonlinear stability properties of the two cases are influenced to a large extent by the surprising contrasts existing even in the unforced situations. For the high Reynolds number effects of nonlinearity alone are destabilizing for plane Poiseuille flow, in contrast with both the initial suggestion of earlier numerical work (our prediction is shown to be consistent with these results nevertheless) and the corresponding high Reynolds number effects in boundary-layer stability. A small amplitude of unevenness at the wall can still have a significant impact on the bifurcation of disturbances to finite-amplitude periodic solutions, however, producing a destabilizing influence on plane Poiseuille flow but a stabilizing influence on boundary-layer flow.

Original languageEnglish
Pages (from-to)241-265
Number of pages25
JournalStudies in Applied Mathematics
Volume66
Issue number3
Publication statusPublished - Jun 1982

Cite this