TY - JOUR
T1 - Subcritical equilibria in Taylor-Couette flow
AU - Deguchi, Kengo
AU - Meseguer, Alvaro
AU - Mellibovsky, Fernando
PY - 2014/5/8
Y1 - 2014/5/8
N2 - Nonlinear equilibrium states characterized by strongly localized vortex pairs are calculated in the linearly stable parameter region of counterrotating Taylor-Couette flow. These subcritical states are rotating waves whose region of existence is consistent with the critical threshold for relaminarization observed in experiments. For sufficiently rapid outer cylinder rotation the solutions extend beyond the static inner cylinder case to corotation, thus exceeding, for the first time, the boundary defined by the inviscid Rayleigh's stability criterion.
AB - Nonlinear equilibrium states characterized by strongly localized vortex pairs are calculated in the linearly stable parameter region of counterrotating Taylor-Couette flow. These subcritical states are rotating waves whose region of existence is consistent with the critical threshold for relaminarization observed in experiments. For sufficiently rapid outer cylinder rotation the solutions extend beyond the static inner cylinder case to corotation, thus exceeding, for the first time, the boundary defined by the inviscid Rayleigh's stability criterion.
UR - http://www.scopus.com/inward/record.url?scp=84900404899&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.112.184502
DO - 10.1103/PhysRevLett.112.184502
M3 - Article
AN - SCOPUS:84900404899
VL - 112
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 18
M1 - 184502
ER -