Subaqueous pyroclastic flows and ignimbrites: an assessment

Ray AF Cas, John V. Wright

Research output: Contribution to journalArticleResearchpeer-review

160 Citations (Scopus)

Abstract

An assessment of the literature on subaqueous pyroclastic flows and their deposits shows that the term "pyroclastic flow" is frequently used loosely to describe primary, hot gas-rich pyroclastic flows, mass-flows which resulted from the transformation of gassupported flows into water-supported ones, and secondary mass-flows carrying redeposited pyroclastic debris. Based on subaerial pyroclastic flows, the term "pyroclastic flow" should be restricted to demonstrably hot, gas-rich mass-flows of pyroclastic debris. Using this definition, very few examples of subaqueous pyroclastic deposits with evidence for hot emplacement and of having been wholly submerged have been described. In the majority of these cases, the evidence for a hot state of emplacement and for the subaqueous nature of the host depositional environment is inadequate. The only unequivocal cases of hot pyroclastic flow deposits with adequate supporting evidence are the Ordovician nearshore, shallow marine ignimbrites of Ireland and Wales, and Miocene ignimbrites of southwest Japan, resulting from the passage of subaerially erupted pyroclastic flows into shallow water. Other possible examples are near-vent dense clast deposits in the Donzurobo Formation of Japan, possible submarine intra-caldera ponded ignimbrite successions in California and Wales, and near-vent pumiceous deposits of Ramsay Island, Wales. All other purported cases are either clearly the result of water-supported mass-flow transportation and deposition (debris avalanches, debris flows, turbidity currents), or lack adequate supporting evidence regarding the heat state or the palaeoenvironment. Only the shallow marine ignimbrites of Ireland and Wales show adequate evidence of welding, but even these could have been nearly wholly exposed above sea-level when welding occurred. We conclude that when pyroclastic flows enter water they are generally disrupted explosively and/or ingest water and transform into water-supported mass-flows, and we suggest the various scenarios in which this occurs. There is no evidence to suggest that welding in wholly subaqueous environments is common.

Original languageEnglish
Pages (from-to)357-380
Number of pages24
JournalBulletin of Volcanology
Volume53
Issue number5
DOIs
Publication statusPublished - 1 Jun 1991

Cite this