TY - JOUR
T1 - Structure-based design and development of functionalized mercaptoguanine derivatives as inhibitors of the folate biosynthesis pathway enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Staphylococcus aureus
AU - Dennis, Matthew
AU - Chhabra, Sandeep
AU - Wang, Zhong-Chang
AU - Debono, Aaron James
AU - Dolezal, Olan
AU - Newman, Janet
AU - Pitcher, Noel Patrick
AU - Rahmani, Raphael Steve
AU - Cleary, Benjamin
AU - Barlow, Nicholas
AU - Hattarki, Meghan
AU - Graham, Bimbil
AU - Peat, Thomas S
AU - Baell, Jonathan Bayldon
AU - Swarbrick, James David
PY - 2014
Y1 - 2014
N2 - 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 ? upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.
AB - 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 ? upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.
UR - http://pubs.acs.org/doi/pdf/10.1021/jm501417f
U2 - 10.1021/jm501417f
DO - 10.1021/jm501417f
M3 - Article
SN - 0022-2623
VL - 57
SP - 9612
EP - 9626
JO - Journal of Medicinal Chemistry
JF - Journal of Medicinal Chemistry
IS - 22
ER -