Structure and dynamics of apical membrane antigen 1 from Plasmodium falciparum FVO

San Sui Lim, Wei W Yang, Bankala Krishnarjuna, Komagal Kannan Sivaraman, Indu Rajmohan Chandrashekaran, Itamar Kass, Christopher Andrew MacRaild, Shane Devine, Cael Debono, Robin F Anders, Martin Scanlon, Peter John Scammells, Raymond Stanley Norton, Sheena McGowan

Research output: Contribution to journalArticleResearchpeer-review

28 Citations (Scopus)

Abstract

Apical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to vaccine-induced antibodies and peptide inhibitors exerting strain-transcending inhibitory effects. Here we present the X-ray crystal structure of AMA1 domains I and II from Plasmodium falciparum strain FVO. We compare our new structure to those of AMA1 from P. falciparum 3D7 and Plasmodium vivax. A combination of normalized B factor analysis and computational methods has been used to investigate the flexibility of the domain I loops and how this correlates with their roles in determining the strain specificity of human antibody responses and inhibitory peptides. We also investigated the domain II loop, a key region involved in inhibitor binding, by comparison of multiple AMA1 crystal structures. Collectively, these results provide valuable insights that should contribute to the design of strain-transcending agents targeting P. falciparum AMA1.
Original languageEnglish
Pages (from-to)7310 - 7320
Number of pages11
JournalBiochemistry
Volume53
Issue number46
DOIs
Publication statusPublished - 2014

Cite this