Structural characterisation of native and recombinant forms of the neurotrophic cytokine MK

Louis Fabri, Hiroshi Maruta, Hisako Muramatsu, Takahashi Muramatsu, Richard J. Simpson, Antony W. Burgess, Edouard C. Nice

Research output: Contribution to journalArticleResearchpeer-review

66 Citations (Scopus)


The retinoic acid (RA)-inducible midkine (MK) gene encodes a heparin-binding protein which can induce neutrite outgrowth in cultured mammalian embryonic brain cells. This cytokine shares 65% amino acid sequence identity with another RA-inducible cytokine, pleiotropin (PTN). Both proteins contain 10 conserved cysteine residues, all of which appears to be disulphide linked. MK and PTN are also rich in lysine and arginine residues rendering them susceptible to proteolysis during purification, and making large-scale preparation of these molecules inherently difficult. Recombinant MK has been expressed as a fusion protein using a pGEX vector transfected in E. coli. To enable refolding of MK, the fusion protein was stored in solution at 4°C for 14 days in the presence of dithiothreitol (DTT). Thrombin cleavage of the fusion protein, post storage, typically generated 5 mg of MK per litre of bacterial pellet. To establish the structural integrity of the recombinant product, we have analysed the refolding kinetics and compared the disulphide bond assignment of recombinant MK with that of native MK and native PTN. The synergistic use of micropreparative HPLC, to separate and recover in small eluant volumes enzymatically derived peptide fragments, with matrix assisted laser desorption mass spectrometry (MALD-MS) and N-terminal sequence analysis has allowed the unambiguous identification of the disulphide bonded fragments of native and recombinant MK. The disulphide bond assignment MK is C12C36, C20C45, C27C49, C59C91 and C69C101, and is equivalent to that of PTN.

Original languageEnglish
Pages (from-to)213-225
Number of pages13
JournalJournal of Chromatography A
Issue number1
Publication statusPublished - 27 Aug 1993
Externally publishedYes

Cite this