Projects per year
Abstract
Natural killer cells and cytotoxic T-lymphocytes deploy perforin and granzymes to kill infected host cells. Perforin, secreted by immune cells, binds target membranes to form pores that deliver pro-apoptotic granzymes into the target cell. A crucial first step in this process is interaction of its C2 domain with target cell membranes, which is a calcium-dependent event. Some aspects of this process are understood, but many molecular details remain unclear. To address this, we investigated the mechanism of Ca2+ and lipid binding to the C2 domain by NMR spectroscopy and x-ray crystallography. Calcium titrations, together with do decylphosphocholine micelle experiments, confirmed that multiple Ca2+ ions bind within the calcium-binding regions, activating perforin with respect to membrane binding. We have also determined the affinities of several of these binding sites and have shown that this interaction causes a significant structural rearrangement in CBR1. Thus, it is proposed that Ca2+ binding at the weakest affinity site triggers changes in the C2 domain that facilitate its interaction with lipid membranes.
Original language | English |
---|---|
Pages (from-to) | 25213-25226 |
Number of pages | 14 |
Journal | Journal of Biological Chemistry |
Volume | 290 |
Issue number | 42 |
DOIs | |
Publication status | Published - 2015 |
Projects
- 1 Finished
-
ARC Centre of Excellence in Advanced Molecular Imaging
Whisstock, J., Abbey, B., Nugent, K., Quiney, H. M., Godfrey, D. I., Heath, W., Fairlie, D., Chapman, H., Peele, A., Davey, J. & Wittmann, A.
30/06/14 → 31/03/21
Project: Research