Projects per year
Abstract
The assembly of the autophagy initiation machinery nucleates autophagosome biogenesis, including in the PINK1- and Parkin-dependent mitophagy pathway implicated in Parkinson’s disease. The structural interaction between the sole transmembrane autophagy protein, autophagy-related protein 9A (ATG9A), and components of the Unc-51–like autophagy activating kinase (ULK1) complex is one of the major missing links needed to complete a structural map of autophagy initiation. We determined the 2.4-Å x-ray crystallographic structure of the ternary structure of ATG9A carboxyl-terminal tail bound to the ATG13:ATG101 Hop1/Rev7/Mad2 (HORMA) dimer, which is part of the ULK1 complex. We term the interacting portion of the extreme carboxyl-terminal part of the ATG9A tail the “HORMA dimer–interacting region” (HDIR). This structure shows that the HDIR binds to the HORMA domain of ATG101 by β sheet complementation such that the ATG9A tail resides in a deep cleft at the ATG13:ATG101 interface. Disruption of this complex in cells impairs damage-induced PINK1/Parkin mitophagy mediated by the cargo receptor NDP52.
Original language | English |
---|---|
Article number | eadg2997 |
Number of pages | 11 |
Journal | Science Advances |
Volume | 9 |
Issue number | 7 |
DOIs | |
Publication status | Published - Feb 2023 |
Projects
- 2 Finished
-
Understanding how cells regulate self-eating in response to starvation and stress
1/01/20 → 31/12/23
Project: Research