Projects per year
Abstract
Use of the guanidinium iodide (GAI) cation is widely recognized as an interface engineering technique for perovskite solar cells that deliver stability improvements via defect passivation on surfaces and grain boundaries. However, a comprehensive understanding of the relationship between the structural and photophysical properties is lacking. Herein, GAI-induced perovskite structural modifications, including derivative phases and underlying transitions, are detected in GAI surface-treated Cs0.07MA0.14FA0.79Pb(I0.83Br0.17)3 through an analysis of X-ray and electron diffraction and microscopy data. An optimum GAI solution concentration at 10 mg mL−1 can eliminate excess PbI2, improve crystallinity, and increase grain size of the as-prepared perovskite films. However, a further increase to 20–40 mg mL−1 induces new (FAPbI3)x(GA2PbI4)x phases and a reduction in crystallinity and grain size. In addition, from confocal photoluminescence imaging, it is observed that 10 mg mL−1 GAI also helps to remove the microscale spatial heterogeneities, demonstrating optimum device performance. These results show that understanding the impact on structure and microstructure of the selection and concentration of surface treatment agents is critical for the homogenization of perovskite optoelectronic properties and achieving efficient device.
Original language | English |
---|---|
Article number | 2200852 |
Number of pages | 11 |
Journal | Solar RRL |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2023 |
Keywords
- confocal photoluminescence microscopy
- passivation
- perovskite solar cells
- surface treatments
- transmission electron microscopy
Projects
- 3 Finished
-
Revealing the atoms that control performance in photoactive perovskites
Etheridge, J., Wong-Leung, J. & Johnson, M.
19/12/20 → 1/11/23
Project: Research
-
ARC Centre of Excellence in Exciton Science
Mulvaney, P., Ghiggino, K. P., Smith, T. A., Sader, J. E., Wong, W. W. H., Russo, S. P., Cole, J., Jasieniak, J., Funston, A., Bach, U., Cheng, Y., Lakhwani, G., Widmer-Cooper, A., McCamey, D., Schmidt, T., Gomez, D. E., Scholes, F., McCallum, R., Dicinoski, G., Du, C., Plenio, M. B., Tiang, J., Neaton, J., Lippitz, M. & Hao, X.
Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal Department Contribution, Monash University – Internal University Contribution
30/06/17 → 30/06/24
Project: Research
-
Advanced in-situ electron microscope facility for research in alloys, nanomaterials, functional materials, magnetic materials and minerals
Etheridge, J., Bond, A., Hodgson, P., Kalantar-Zadeh, K., Li, D., McCulloch, D. G., Muddle, B., Mulvaney, P., Pring, A. S. & Suzuki, K.
Australian Research Council (ARC), Deakin University, RMIT University, South Australian Museum, University of Adelaide, University of Melbourne, Victorian Centre for Advanced Materials Manufacturing (VCAMM)
1/01/11 → 15/04/14
Project: Research
Equipment
-
Melbourne Centre for Nanofabrication
Sean Langelier (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility