Stochastic response determination of structural systems modeled via dependent coordinates: a frequency domain treatment based on generalized modal analysis

Antonina Pirrotta, Ioannis A. Kougioumtzoglou, Athanasios A. Pantelous

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Generalized independent coordinates are typically utilized within an analytical dynamics framework to model the motion of structural and mechanical engineering systems. Nevertheless, for complex systems, such as multi-body structures, an explicit formulation of the equations of motion by utilizing generalized, independent, coordinates can be a daunting task. In this regard, employing a set of redundant coordinates can facilitate the formulation of the governing dynamics equations. In this setting, however, standard response analysis techniques cannot be applied in a straightforward manner. For instance, defining and determining a transfer function within a frequency domain response analysis framework is challenging due to the presence of singular matrices, and thus, the machinery of generalized matrix inverses needs to be employed. An efficient frequency domain response analysis methodology for structural dynamical systems modeled via dependent coordinates is developed herein. This is done by resorting to the Moore–Penrose generalized matrix inverse in conjunction with a recently proposed extended modal analysis treatment. It is shown that not only the formulation is efficient in drastically reducing the computational cost when compared to a straightforward numerical evaluation of the involved generalized inverses, but also facilitates the derivation and implementation of the celebrated random vibration input–output frequency domain relationship between the excitation and the response power spectrum matrices. The validity of the methodology is demonstrated by considering a multi-degree-of-freedom shear type structure and a multi-body structural system as numerical examples.

Original languageEnglish
Number of pages11
JournalMeccanica
DOIs
Publication statusAccepted/In press - 4 Mar 2019

Keywords

  • Analytical dynamics
  • Power spectral density matrix
  • Singular matrix
  • Transfer function matrix

Cite this

@article{f2683d50a3744366871f7853246490b4,
title = "Stochastic response determination of structural systems modeled via dependent coordinates: a frequency domain treatment based on generalized modal analysis",
abstract = "Generalized independent coordinates are typically utilized within an analytical dynamics framework to model the motion of structural and mechanical engineering systems. Nevertheless, for complex systems, such as multi-body structures, an explicit formulation of the equations of motion by utilizing generalized, independent, coordinates can be a daunting task. In this regard, employing a set of redundant coordinates can facilitate the formulation of the governing dynamics equations. In this setting, however, standard response analysis techniques cannot be applied in a straightforward manner. For instance, defining and determining a transfer function within a frequency domain response analysis framework is challenging due to the presence of singular matrices, and thus, the machinery of generalized matrix inverses needs to be employed. An efficient frequency domain response analysis methodology for structural dynamical systems modeled via dependent coordinates is developed herein. This is done by resorting to the Moore–Penrose generalized matrix inverse in conjunction with a recently proposed extended modal analysis treatment. It is shown that not only the formulation is efficient in drastically reducing the computational cost when compared to a straightforward numerical evaluation of the involved generalized inverses, but also facilitates the derivation and implementation of the celebrated random vibration input–output frequency domain relationship between the excitation and the response power spectrum matrices. The validity of the methodology is demonstrated by considering a multi-degree-of-freedom shear type structure and a multi-body structural system as numerical examples.",
keywords = "Analytical dynamics, Power spectral density matrix, Singular matrix, Transfer function matrix",
author = "Antonina Pirrotta and Kougioumtzoglou, {Ioannis A.} and Pantelous, {Athanasios A.}",
year = "2019",
month = "3",
day = "4",
doi = "10.1007/s11012-019-00963-y",
language = "English",
journal = "Meccanica",
issn = "0025-6455",
publisher = "Springer-Verlag London Ltd.",

}

Stochastic response determination of structural systems modeled via dependent coordinates : a frequency domain treatment based on generalized modal analysis. / Pirrotta, Antonina; Kougioumtzoglou, Ioannis A.; Pantelous, Athanasios A.

In: Meccanica, 04.03.2019.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Stochastic response determination of structural systems modeled via dependent coordinates

T2 - a frequency domain treatment based on generalized modal analysis

AU - Pirrotta, Antonina

AU - Kougioumtzoglou, Ioannis A.

AU - Pantelous, Athanasios A.

PY - 2019/3/4

Y1 - 2019/3/4

N2 - Generalized independent coordinates are typically utilized within an analytical dynamics framework to model the motion of structural and mechanical engineering systems. Nevertheless, for complex systems, such as multi-body structures, an explicit formulation of the equations of motion by utilizing generalized, independent, coordinates can be a daunting task. In this regard, employing a set of redundant coordinates can facilitate the formulation of the governing dynamics equations. In this setting, however, standard response analysis techniques cannot be applied in a straightforward manner. For instance, defining and determining a transfer function within a frequency domain response analysis framework is challenging due to the presence of singular matrices, and thus, the machinery of generalized matrix inverses needs to be employed. An efficient frequency domain response analysis methodology for structural dynamical systems modeled via dependent coordinates is developed herein. This is done by resorting to the Moore–Penrose generalized matrix inverse in conjunction with a recently proposed extended modal analysis treatment. It is shown that not only the formulation is efficient in drastically reducing the computational cost when compared to a straightforward numerical evaluation of the involved generalized inverses, but also facilitates the derivation and implementation of the celebrated random vibration input–output frequency domain relationship between the excitation and the response power spectrum matrices. The validity of the methodology is demonstrated by considering a multi-degree-of-freedom shear type structure and a multi-body structural system as numerical examples.

AB - Generalized independent coordinates are typically utilized within an analytical dynamics framework to model the motion of structural and mechanical engineering systems. Nevertheless, for complex systems, such as multi-body structures, an explicit formulation of the equations of motion by utilizing generalized, independent, coordinates can be a daunting task. In this regard, employing a set of redundant coordinates can facilitate the formulation of the governing dynamics equations. In this setting, however, standard response analysis techniques cannot be applied in a straightforward manner. For instance, defining and determining a transfer function within a frequency domain response analysis framework is challenging due to the presence of singular matrices, and thus, the machinery of generalized matrix inverses needs to be employed. An efficient frequency domain response analysis methodology for structural dynamical systems modeled via dependent coordinates is developed herein. This is done by resorting to the Moore–Penrose generalized matrix inverse in conjunction with a recently proposed extended modal analysis treatment. It is shown that not only the formulation is efficient in drastically reducing the computational cost when compared to a straightforward numerical evaluation of the involved generalized inverses, but also facilitates the derivation and implementation of the celebrated random vibration input–output frequency domain relationship between the excitation and the response power spectrum matrices. The validity of the methodology is demonstrated by considering a multi-degree-of-freedom shear type structure and a multi-body structural system as numerical examples.

KW - Analytical dynamics

KW - Power spectral density matrix

KW - Singular matrix

KW - Transfer function matrix

UR - http://www.scopus.com/inward/record.url?scp=85062680449&partnerID=8YFLogxK

U2 - 10.1007/s11012-019-00963-y

DO - 10.1007/s11012-019-00963-y

M3 - Article

JO - Meccanica

JF - Meccanica

SN - 0025-6455

ER -