TY - JOUR
T1 - Stochastic modeling for eind energy and multi-objective optimal power flow by novel meta-heuristic method
AU - Khamees, Amr Khaled
AU - Abdelaziz, Almoataz Y.
AU - Eskaros, Makram Roshdy
AU - Alhelou, Hassan Haes
AU - Attia, Mahmoud Abdallah
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2021
Y1 - 2021
N2 - Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems.
AB - Wind energy is considered one of the most important alternative energy sources for generating electricity. But the stochastic nature of wind, leads to use the distribution function to present the wind system. The two-parameter Weibull distribution is often used in the wind speed presentation. The two-parameter Weibull distribution has scale and shape parameters that are important in wind energy applications, thus selecting the optimum method for estimation them is important. The unpredictability in wind speed leads to uncertainty in devolved power which leads to difficult system operation. In this study, two novel artificial intelligence (AI) methods called Mayfly algorithm (MA) and Aquila Optimizer (AO) are used for calculating the Weibull distribution parameters. Results are compared with four classical numerical methods called the Maximum likelihood approach, Energy pattern factor method, Graphical method, and Empirical method. The two AI methods prove superiority and robustness for evaluating two-parameter of Weibull distribution as they give lower errors and higher correlation coefficients. Moreover, to prove the accuracy of the MA method in solving the optimal power flow (OPF) problem, single and multi-objective OPF is applied on a standard IEEE-30 bus system to minimize fuel cost, power loss, thermal unit emissions, and voltage security index (VSI), and results are compared with other metaheuristic methods. The results prove the validity and robustness of the MA method in solving the OPF problem. Then, single and multi-objective stochastic optimal power flow (SCOPF) is applied to modified IEEE-30 which contains two wind farms to minimize total generation cost, power loss, thermal unit emission, and VSI. The fuzzy-based Pareto front technique is utilized in multi-objective optimization (MOO) to obtain the best compromise point solution. The objective function of SCOPF considers reserve cost for overestimation and penalty cost for underestimation of wind energy. Finally, this paper studies the effect of changing Weibull parameters, penalty cost coefficient, and reverse cost coefficient in wind energy generation cost. The proposed MA method could be valuable to system operators as a decision-making aid when dealing with hybrid power systems.
KW - Aquila optimizer
KW - Mayfly algorithm
KW - Multi-objective optimization
KW - Optimal power flow
KW - Stochastic optimal power flow
KW - Weibull distribution
KW - Wind energy
UR - http://www.scopus.com/inward/record.url?scp=85119401675&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2021.3127940
DO - 10.1109/ACCESS.2021.3127940
M3 - Article
AN - SCOPUS:85119401675
VL - 9
SP - 158353
EP - 158366
JO - IEEE Access
JF - IEEE Access
SN - 2169-3536
ER -