Standard uncertainty estimation on polynomial regression models

Arvind Rajan, Ye Chow Kuang, Melanie Po-Leen Ooi, Serge Demidenko

    Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

    3 Citations (Scopus)
    Original languageEnglish
    Title of host publication2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings
    EditorsSalvatore Baglio, Deniz Gurkan
    Place of PublicationPiscataway NJ USA
    PublisherIEEE, Institute of Electrical and Electronics Engineers
    Pages207 - 212
    Number of pages6
    ISBN (Print)9781479921805
    DOIs
    Publication statusPublished - 2014
    EventIEEE Sensors Applications Symposium - Queenstown New Zealand, Piscataway NJ USA
    Duration: 1 Jan 2014 → …

    Conference

    ConferenceIEEE Sensors Applications Symposium
    CityPiscataway NJ USA
    Period1/01/14 → …

    Cite this

    Rajan, A., Kuang, Y. C., Ooi, M. P-L., & Demidenko, S. (2014). Standard uncertainty estimation on polynomial regression models. In S. Baglio, & D. Gurkan (Eds.), 2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings (pp. 207 - 212). Piscataway NJ USA: IEEE, Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/SAS.2014.6798947
    Rajan, Arvind ; Kuang, Ye Chow ; Ooi, Melanie Po-Leen ; Demidenko, Serge. / Standard uncertainty estimation on polynomial regression models. 2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings. editor / Salvatore Baglio ; Deniz Gurkan. Piscataway NJ USA : IEEE, Institute of Electrical and Electronics Engineers, 2014. pp. 207 - 212
    @inproceedings{21d04ae7522341448401990e9985d3f6,
    title = "Standard uncertainty estimation on polynomial regression models",
    author = "Arvind Rajan and Kuang, {Ye Chow} and Ooi, {Melanie Po-Leen} and Serge Demidenko",
    year = "2014",
    doi = "10.1109/SAS.2014.6798947",
    language = "English",
    isbn = "9781479921805",
    pages = "207 -- 212",
    editor = "Salvatore Baglio and Deniz Gurkan",
    booktitle = "2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings",
    publisher = "IEEE, Institute of Electrical and Electronics Engineers",
    address = "United States of America",

    }

    Rajan, A, Kuang, YC, Ooi, MP-L & Demidenko, S 2014, Standard uncertainty estimation on polynomial regression models. in S Baglio & D Gurkan (eds), 2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings. IEEE, Institute of Electrical and Electronics Engineers, Piscataway NJ USA, pp. 207 - 212, IEEE Sensors Applications Symposium, Piscataway NJ USA, 1/01/14. https://doi.org/10.1109/SAS.2014.6798947

    Standard uncertainty estimation on polynomial regression models. / Rajan, Arvind; Kuang, Ye Chow; Ooi, Melanie Po-Leen; Demidenko, Serge.

    2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings. ed. / Salvatore Baglio; Deniz Gurkan. Piscataway NJ USA : IEEE, Institute of Electrical and Electronics Engineers, 2014. p. 207 - 212.

    Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

    TY - GEN

    T1 - Standard uncertainty estimation on polynomial regression models

    AU - Rajan, Arvind

    AU - Kuang, Ye Chow

    AU - Ooi, Melanie Po-Leen

    AU - Demidenko, Serge

    PY - 2014

    Y1 - 2014

    UR - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6798947

    U2 - 10.1109/SAS.2014.6798947

    DO - 10.1109/SAS.2014.6798947

    M3 - Conference Paper

    SN - 9781479921805

    SP - 207

    EP - 212

    BT - 2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings

    A2 - Baglio, Salvatore

    A2 - Gurkan, Deniz

    PB - IEEE, Institute of Electrical and Electronics Engineers

    CY - Piscataway NJ USA

    ER -

    Rajan A, Kuang YC, Ooi MP-L, Demidenko S. Standard uncertainty estimation on polynomial regression models. In Baglio S, Gurkan D, editors, 2014 IEEE Sensors Applications Symposium (SAS 2014) Proceedings. Piscataway NJ USA: IEEE, Institute of Electrical and Electronics Engineers. 2014. p. 207 - 212 https://doi.org/10.1109/SAS.2014.6798947