Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

Yuanmin Zhu, Chang Wei Sea, Rong Yu, Ruirui Liu, Tzu-Chiao Wei, Jr-Hau He, Ying-Hao Chu, Qian Zhan

    Research output: Contribution to journalArticleResearchpeer-review

    3 Citations (Scopus)

    Abstract

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111](SRO) to [011](SRO) as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.
    Original languageEnglish
    Pages (from-to)1 - 5
    Number of pages5
    JournalApplied Physics Letters
    Volume107
    Issue number19
    DOIs
    Publication statusPublished - 2015

    Cite this