SPH simulations of grain growth in protoplanetary disks

Guillaume Laibe, J Gonzalez, L Fouchet, S Maddison

Research output: Contribution to journalArticleResearchpeer-review

42 Citations (Scopus)

Abstract

In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution in disks.Methods. Following the analytic derivation of Stepinski Valageas (1997, A A, 319, 1007), which assumes that grains stick perfectly upon collision, we implement a convenient and fast method of following grain growth in our 3D, two-phase (gas plus dust) SPH code. We then follow the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk. Results. We find that the grains go through various stages of growth due to the complex interplay between gas drag, dust dynamics, and growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through the bulk of the disk, and finally pile up in the inner disk where they grow more efficiently. This results in a bimodal distribution of grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in years in the inner disk and survive the fast migration phase.
Original languageEnglish
Pages (from-to)265 - 270
Number of pages6
JournalAstronomy & Astrophysics
Volume487
Issue number1
DOIs
Publication statusPublished - 2008
Externally publishedYes

Cite this