Species- and site-specific genome editing in complex bacterial communities

Benjamin E. Rubin, Spencer Diamond, Brady F. Cress, Alexander Crits-Christoph, Yue Clare Lou, Adair L. Borges, Haridha Shivram, Christine He, Michael Xu, Zeyi Zhou, Sara J. Smith, Rachel Rovinsky, Dylan C.J. Smock, Kimberly Tang, Trenton K. Owens, Netravathi Krishnappa, Rohan Sachdeva, Rodolphe Barrangou, Adam M. Deutschbauer, Jillian F. BanfieldJennifer A. Doudna

Research output: Contribution to journalArticleResearchpeer-review

150 Citations (Scopus)

Abstract

Understanding microbial gene functions relies on the application of experimental genetics in cultured microorganisms. However, the vast majority of bacteria and archaea remain uncultured, precluding the application of traditional genetic methods to these organisms and their interactions. Here, we characterize and validate a generalizable strategy for editing the genomes of specific organisms in microbial communities. We apply environmental transformation sequencing (ET-seq), in which nontargeted transposon insertions are mapped and quantified following delivery to a microbial community, to identify genetically tractable constituents. Next, DNA-editing all-in-one RNA-guided CRISPR–Cas transposase (DART) systems for targeted DNA insertion into organisms identified as tractable by ET-seq are used to enable organism- and locus-specific genetic manipulation in a community context. Using a combination of ET-seq and DART in soil and infant gut microbiota, we conduct species- and site-specific edits in several bacteria, measure gene fitness in a nonmodel bacterium and enrich targeted species. These tools enable editing of microbial communities for understanding and control.

Original languageEnglish
Pages (from-to)34-47
Number of pages14
JournalNature Microbiology
Volume7
Issue number1
DOIs
Publication statusPublished - Jan 2022
Externally publishedYes

Cite this