TY - JOUR
T1 - Spatiotemporal assessment of GHG emissions and nutrient sequestration linked to agronutrient runoff in global wetlands
AU - Pasut, Chiara
AU - Tang, Fiona H.M.
AU - Hamilton, David
AU - Riley, William J.
AU - Maggi, Federico
N1 - Funding Information:
This work was supported by the SREI2020 EnviroSphere research program and the SREI Voucher of the University of Sydney. The authors acknowledge the Sydney Informatics Hub and the University of Sydney's high performance computing cluster Artemis for providing the high performance computing resources that have contributed to the results reported within this work. The authors acknowledge the use of the National Computational Infrastructure (NCI) which is supported by the Australian Government, and accessed through the Sydney Informatics Hub HPC Allocation Scheme, which is supported by the Deputy Vice‐Chancellor (Research), University of Sydney and the ARC LIEF, 2019: Smith, Muller, Thornber, et al., Sustaining and strengthening merit‐based access to National Computational Infrastructure (LE190100021). William J. Riley was supported by U.S. Department of Energy, Office of Science, Biological and Environmental Research, Regional and Global Climatic Modeling Program through the RUBISCO Scientific Focus Area under contract DE‐AC02‐05CH11231 to Lawrence Berkeley National Laboratory.
Funding Information:
This work was supported by the SREI2020 EnviroSphere research program and the SREI Voucher of the University of Sydney. The authors acknowledge the Sydney Informatics Hub and the University of Sydney's high performance computing cluster Artemis for providing the high performance computing resources that have contributed to the results reported within this work. The authors acknowledge the use of the National Computational Infrastructure (NCI) which is supported by the Australian Government, and accessed through the Sydney Informatics Hub HPC Allocation Scheme, which is supported by the Deputy Vice-Chancellor (Research), University of Sydney and the ARC LIEF, 2019: Smith, Muller, Thornber, et al., Sustaining and strengthening merit-based access to National Computational Infrastructure (LE190100021). William J. Riley was supported by U.S. Department of Energy, Office of Science, Biological and Environmental Research, Regional and Global Climatic Modeling Program through the RUBISCO Scientific Focus Area under contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory.
Publisher Copyright:
© 2021. American Geophysical Union. All Rights Reserved.
PY - 2021/4
Y1 - 2021/4
N2 - Wetlands play a key role in regulating global greenhouse gas (GHG) emissions but anthropogenic impacts on nutrients may severely alter this balance. Recent assessments indicate that almost 22% of the global wetland area may be affected by agricultural runoff. In this work, we developed and applied a dynamic mechanistic reaction network model of soil organic matter linking the carbon (C), nitrogen (N), and sulfur (S) cycles at 0.5° × 0.5° spatial resolution across the globe. The model was used to estimate GHG emissions and nutrient sequestration rates in wetlands, driven by environmental stressors including N, P, and S fertilization. Wetland annual GHG emissions are estimated to be 136 ± 12.5 Tg C-CH4, 589 ± 45.8 Tg C-CO2, and 0.3 ± 0.04 Tg N-N2O; in contrast, C, N, and S annual sequestration rates are estimated to be 576 ± 88.1 Tg C, 20 ± 4.4 Tg N, and 7.4 ± 0.8 Tg S, between 2000 and 2017. N fertilization inputs were responsible for 13% N2O emissions in wetlands in the Northern Hemisphere, while tropical wetlands were major reservoirs for C, N, and S. Temperature, net primary productivity, and methanogenic microorganisms exert the major control on GHG emissions. Wetland CH4 and CO2 emissions were found to have a hysteretic relationship with seasonal soil temperature, but not N2O. A global-scale assessment is pivotal for best nutrient management practices, reducing nutrient losses, and controlling gas emissions.
AB - Wetlands play a key role in regulating global greenhouse gas (GHG) emissions but anthropogenic impacts on nutrients may severely alter this balance. Recent assessments indicate that almost 22% of the global wetland area may be affected by agricultural runoff. In this work, we developed and applied a dynamic mechanistic reaction network model of soil organic matter linking the carbon (C), nitrogen (N), and sulfur (S) cycles at 0.5° × 0.5° spatial resolution across the globe. The model was used to estimate GHG emissions and nutrient sequestration rates in wetlands, driven by environmental stressors including N, P, and S fertilization. Wetland annual GHG emissions are estimated to be 136 ± 12.5 Tg C-CH4, 589 ± 45.8 Tg C-CO2, and 0.3 ± 0.04 Tg N-N2O; in contrast, C, N, and S annual sequestration rates are estimated to be 576 ± 88.1 Tg C, 20 ± 4.4 Tg N, and 7.4 ± 0.8 Tg S, between 2000 and 2017. N fertilization inputs were responsible for 13% N2O emissions in wetlands in the Northern Hemisphere, while tropical wetlands were major reservoirs for C, N, and S. Temperature, net primary productivity, and methanogenic microorganisms exert the major control on GHG emissions. Wetland CH4 and CO2 emissions were found to have a hysteretic relationship with seasonal soil temperature, but not N2O. A global-scale assessment is pivotal for best nutrient management practices, reducing nutrient losses, and controlling gas emissions.
KW - agricultural runoff
KW - global-scale modeling
KW - wetland GHG
KW - wetland nutrients cycles
UR - http://www.scopus.com/inward/record.url?scp=85104939178&partnerID=8YFLogxK
U2 - 10.1029/2020GB006816
DO - 10.1029/2020GB006816
M3 - Article
AN - SCOPUS:85104939178
SN - 0886-6236
VL - 35
JO - Global Biogeochemical Cycles
JF - Global Biogeochemical Cycles
IS - 4
M1 - e2020GB006816
ER -