Abstract
This work aims to find an efficient sintering technique and optimal sintering conditions of a novel sol–gel derived Bioglass®-ceramic powder so as to achieve much improved mechanical properties compared to conventional Bioglass®. To this end, the spark plasma sintering (SPS) technique was for the first time used to densify the sol–gel derived Bioglass®-ceramic powder. It was found that the sol–gel derived Bioglass®-ceramics sintered with the SPS technique at 950 °C for 15 min had a high Young's modulus value of ~ 110 GPa, which was comparable to that of compact bone and significantly higher than the maximal value achieved by the conventional heat treatment. Moreover, the Bioglass®-ceramic compacts sintered with SPS released alkaline ions slowly and as a result, these highly densified Bioglass®-ceramics exhibited better cytocompatibility at the early stage of cell culture testing, compared to the conventional Bioglass®. Hence, the SPS technique is recommended to be used in the process of sol–gel derived Bioglass®-ceramics and its tissue engineering scaffolds.
Original language | English |
---|---|
Pages (from-to) | 494 - 502 |
Number of pages | 9 |
Journal | Materials Science and Engineering C: Materials for Biological Applications |
Volume | 32 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2012 |
Equipment
-
Centre for Electron Microscopy (MCEM)
Sorrell, F. (Manager) & Miller, P. (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility