Research output per year
Research output per year
Nina Kamčev, Michael Krivelevich, Benny Sudakov
Research output: Contribution to journal › Article › Research › peer-review
An edge (vertex) colored graph is rainbow-connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colors. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colors needed for a rainbow edge (vertex) coloring of G. In this article, we propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several known results, as well as some new ones.
| Original language | English |
|---|---|
| Pages (from-to) | 372-383 |
| Number of pages | 12 |
| Journal | Journal of Graph Theory |
| Volume | 83 |
| Issue number | 4 |
| DOIs | |
| Publication status | Published - 1 Dec 2016 |
| Externally published | Yes |
Research output: Contribution to journal › Article › Other › peer-review