Solvability analysis and numerical approximation of linearized cardiac electromechanics

Boris Andreianov, Mostafa Bendahmane, Alfio Quarteroni, Ricardo Ruiz-Baier

Research output: Contribution to journalArticleResearchpeer-review

11 Citations (Scopus)


This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The problem consists in a reaction-diffusion system governing the dynamics of ionic quantities, intra-and extra-cellular potentials, and the linearized elasticity equations are adopted to describe the motion of an incompressible material. The coupling between muscle contraction, biochemical reactions and electric activity is introduced with a so-called active strain decomposition framework, where the material gradient of deformation is split into an active (electrophysiology-dependent) part and an elastic (passive) one. Under the assumption of linearized elastic behavior and a truncation of the updated nonlinear diffusivities, we prove existence of weak solutions to the underlying coupled reaction-diffusion system and uniqueness of regular solutions. The proof of existence is based on a combination of parabolic regularization, the Faedo-Galerkin method, and the monotonicity-compactness method of Lions. A finite element formulation is also introduced, for which we establish existence of discrete solutions and show convergence to a weak solution of the original problem. We close with a numerical example illustrating the convergence of the method and some features of the model. 

Original languageEnglish
Pages (from-to)959-993
Number of pages35
JournalMathematical Models and Methods in Applied Sciences
Issue number5
Publication statusPublished - 25 May 2015
Externally publishedYes


  • active deformation
  • bidomain equations
  • convergence of approximations
  • Electromechanical coupling
  • finite element approximation
  • weak compactness method
  • weak solutions
  • weak-strong uniqueness

Cite this