Solid-state light-phase detector

Tim Paasch-Colberg, Agustin Eduardo Schiffrin, Nicholas Karpowicz, Stanislav Yu Kruchinin, Ozge Saglam, Sabine Keiber, Olga Razskazovskaya, Sascha Muhlbrandt, Ali Sami Alnaser, Matthias Kubel, Vadym M Apalkov, Daniel Gerster, Joachim Reichert, Tibor Wittmann, Johannes V Barth, Mark Ilich Stockman, Ralph Ernstorfer, Vladislav S Yakovlev, Reinhard Kienberger, Ferenc Krausz

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Attosecond science relies on the use of intense, waveform-controlled, few-cycle laser pulses to control extreme nonlinear optical processes taking place within a fraction of an optical period. A number of techniques are available for retrieving the amplitude envelope and chirp of such few-cycle laser pulses. However, their full characterization requires detection of the absolute offset between the rapidly oscillating carrier wave and the pulse envelope, the carrier-envelope phase (CEP). So far, this has only been feasible with photoelectron spectroscopy, relying on complex vacuum set-ups. Here, we present a technique that enables the detection of the CEP of few-cycle laser pulses under ambient conditions. This is based on the CEP-dependence of directly measurable electric currents generated by the electric field of light in a metal-dielectric-metal nanojunction. The device holds promise for routine measurement and monitoring of the CEP in attosecond laboratories
Original languageEnglish
Pages (from-to)214 - 218
Number of pages5
JournalNature Photonics
Volume8
Issue number3
DOIs
Publication statusPublished - 2014
Externally publishedYes

Keywords

  • Infrared radiation
  • carrier-envelope phase
  • Harmonic generation

Cite this

Paasch-Colberg, T., Schiffrin, A. E., Karpowicz, N., Kruchinin, S. Y., Saglam, O., Keiber, S., ... Krausz, F. (2014). Solid-state light-phase detector. Nature Photonics, 8(3), 214 - 218. https://doi.org/10.1038/nphoton.2013.348
Paasch-Colberg, Tim ; Schiffrin, Agustin Eduardo ; Karpowicz, Nicholas ; Kruchinin, Stanislav Yu ; Saglam, Ozge ; Keiber, Sabine ; Razskazovskaya, Olga ; Muhlbrandt, Sascha ; Alnaser, Ali Sami ; Kubel, Matthias ; Apalkov, Vadym M ; Gerster, Daniel ; Reichert, Joachim ; Wittmann, Tibor ; Barth, Johannes V ; Stockman, Mark Ilich ; Ernstorfer, Ralph ; Yakovlev, Vladislav S ; Kienberger, Reinhard ; Krausz, Ferenc. / Solid-state light-phase detector. In: Nature Photonics. 2014 ; Vol. 8, No. 3. pp. 214 - 218.
@article{de20a6614acd4f8cb5168e3cf282618d,
title = "Solid-state light-phase detector",
abstract = "Attosecond science relies on the use of intense, waveform-controlled, few-cycle laser pulses to control extreme nonlinear optical processes taking place within a fraction of an optical period. A number of techniques are available for retrieving the amplitude envelope and chirp of such few-cycle laser pulses. However, their full characterization requires detection of the absolute offset between the rapidly oscillating carrier wave and the pulse envelope, the carrier-envelope phase (CEP). So far, this has only been feasible with photoelectron spectroscopy, relying on complex vacuum set-ups. Here, we present a technique that enables the detection of the CEP of few-cycle laser pulses under ambient conditions. This is based on the CEP-dependence of directly measurable electric currents generated by the electric field of light in a metal-dielectric-metal nanojunction. The device holds promise for routine measurement and monitoring of the CEP in attosecond laboratories",
keywords = "Infrared radiation, carrier-envelope phase, Harmonic generation",
author = "Tim Paasch-Colberg and Schiffrin, {Agustin Eduardo} and Nicholas Karpowicz and Kruchinin, {Stanislav Yu} and Ozge Saglam and Sabine Keiber and Olga Razskazovskaya and Sascha Muhlbrandt and Alnaser, {Ali Sami} and Matthias Kubel and Apalkov, {Vadym M} and Daniel Gerster and Joachim Reichert and Tibor Wittmann and Barth, {Johannes V} and Stockman, {Mark Ilich} and Ralph Ernstorfer and Yakovlev, {Vladislav S} and Reinhard Kienberger and Ferenc Krausz",
year = "2014",
doi = "10.1038/nphoton.2013.348",
language = "English",
volume = "8",
pages = "214 -- 218",
journal = "Nature Photonics",
issn = "1749-4885",
publisher = "Nature Publishing Group",
number = "3",

}

Paasch-Colberg, T, Schiffrin, AE, Karpowicz, N, Kruchinin, SY, Saglam, O, Keiber, S, Razskazovskaya, O, Muhlbrandt, S, Alnaser, AS, Kubel, M, Apalkov, VM, Gerster, D, Reichert, J, Wittmann, T, Barth, JV, Stockman, MI, Ernstorfer, R, Yakovlev, VS, Kienberger, R & Krausz, F 2014, 'Solid-state light-phase detector' Nature Photonics, vol. 8, no. 3, pp. 214 - 218. https://doi.org/10.1038/nphoton.2013.348

Solid-state light-phase detector. / Paasch-Colberg, Tim; Schiffrin, Agustin Eduardo; Karpowicz, Nicholas; Kruchinin, Stanislav Yu; Saglam, Ozge; Keiber, Sabine; Razskazovskaya, Olga; Muhlbrandt, Sascha; Alnaser, Ali Sami; Kubel, Matthias; Apalkov, Vadym M; Gerster, Daniel; Reichert, Joachim; Wittmann, Tibor; Barth, Johannes V; Stockman, Mark Ilich; Ernstorfer, Ralph; Yakovlev, Vladislav S; Kienberger, Reinhard; Krausz, Ferenc.

In: Nature Photonics, Vol. 8, No. 3, 2014, p. 214 - 218.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Solid-state light-phase detector

AU - Paasch-Colberg, Tim

AU - Schiffrin, Agustin Eduardo

AU - Karpowicz, Nicholas

AU - Kruchinin, Stanislav Yu

AU - Saglam, Ozge

AU - Keiber, Sabine

AU - Razskazovskaya, Olga

AU - Muhlbrandt, Sascha

AU - Alnaser, Ali Sami

AU - Kubel, Matthias

AU - Apalkov, Vadym M

AU - Gerster, Daniel

AU - Reichert, Joachim

AU - Wittmann, Tibor

AU - Barth, Johannes V

AU - Stockman, Mark Ilich

AU - Ernstorfer, Ralph

AU - Yakovlev, Vladislav S

AU - Kienberger, Reinhard

AU - Krausz, Ferenc

PY - 2014

Y1 - 2014

N2 - Attosecond science relies on the use of intense, waveform-controlled, few-cycle laser pulses to control extreme nonlinear optical processes taking place within a fraction of an optical period. A number of techniques are available for retrieving the amplitude envelope and chirp of such few-cycle laser pulses. However, their full characterization requires detection of the absolute offset between the rapidly oscillating carrier wave and the pulse envelope, the carrier-envelope phase (CEP). So far, this has only been feasible with photoelectron spectroscopy, relying on complex vacuum set-ups. Here, we present a technique that enables the detection of the CEP of few-cycle laser pulses under ambient conditions. This is based on the CEP-dependence of directly measurable electric currents generated by the electric field of light in a metal-dielectric-metal nanojunction. The device holds promise for routine measurement and monitoring of the CEP in attosecond laboratories

AB - Attosecond science relies on the use of intense, waveform-controlled, few-cycle laser pulses to control extreme nonlinear optical processes taking place within a fraction of an optical period. A number of techniques are available for retrieving the amplitude envelope and chirp of such few-cycle laser pulses. However, their full characterization requires detection of the absolute offset between the rapidly oscillating carrier wave and the pulse envelope, the carrier-envelope phase (CEP). So far, this has only been feasible with photoelectron spectroscopy, relying on complex vacuum set-ups. Here, we present a technique that enables the detection of the CEP of few-cycle laser pulses under ambient conditions. This is based on the CEP-dependence of directly measurable electric currents generated by the electric field of light in a metal-dielectric-metal nanojunction. The device holds promise for routine measurement and monitoring of the CEP in attosecond laboratories

KW - Infrared radiation

KW - carrier-envelope phase

KW - Harmonic generation

UR - http://www.nature.com/nphoton/journal/v8/n3/pdf/nphoton.2013.348.pdf

U2 - 10.1038/nphoton.2013.348

DO - 10.1038/nphoton.2013.348

M3 - Article

VL - 8

SP - 214

EP - 218

JO - Nature Photonics

JF - Nature Photonics

SN - 1749-4885

IS - 3

ER -

Paasch-Colberg T, Schiffrin AE, Karpowicz N, Kruchinin SY, Saglam O, Keiber S et al. Solid-state light-phase detector. Nature Photonics. 2014;8(3):214 - 218. https://doi.org/10.1038/nphoton.2013.348