Projects per year
Abstract
Liposomes have been widely researched as drug delivery systems; however, the solid state form of drug inside the liposome, whether it is in solution or in a solid state, is often not studied. The solid state properties of the drug inside the liposomes are important, as they dictate the drug release behavior when the liposomes come into contact with physiological fluid. Recently, a new approach of making liposomal ciprofloxacin nanocrystals was proposed by the use of an additional freeze-thawing step in the liposomal preparation method. This paper aims to determine the solid state properties of ciprofloxacin inside the liposomes after this additional freeze-thawing cycle using cryo-TEM, small-angle X-ray scattering (SAXS), and cross-polarized light microscopy (CPLM). Ciprofloxacin precipitated in the ciprofloxacin hydrate crystal form with a unit cell dimension of 16.7 Å. The nanocrystals also showed a phase transition at 93 °C, which represents dehydration of the hydrate crystals to the anhydrate form of ciprofloxacin, verified by temperature-dependent SAXS measurements. Furthermore, the dependence of the solid state form of the nanocrystals on pH was investigated in situ, and it was shown that the liposomal ciprofloxacin nanocrystals retained their crystalline form at pH 6-10. Understanding the solid state attributes of nanocrystals inside liposomes provides improved understanding of drug dissolution and release as well as opening avenues to new applications where the nanosized crystals can provide a dissolution benefit.
Original language | English |
---|---|
Pages (from-to) | 184-194 |
Number of pages | 11 |
Journal | Molecular Pharmaceutics |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jan 2019 |
Keywords
- ciprofloxacin
- cryo-TEM
- liposomes
- nanocrystals
- small-angle X-ray scattering
- solid state
Projects
- 1 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T., Boyd, B., Bunnett, N., Porter, C., Caruso, F., Kent, S., Thordarson, P., Kearnes, M., Gooding, J., Kavallaris, M., Thurecht, K., Whittaker, A., Parton, R., Corrie, S. R., Johnston, A., McGhee, J., Greguric, I. D., Stevens, M. M., Lewis, J., Lee, D. S., Alexander, C., Dawson, K., Hawker, C., Haddleton, D., Thierry, B., Prestidge, C. A., Meyer, A., Jones-Jayasinghe, N., Voelcker, N. H., Nann, T. & McLean, K.
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales, University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, SungKyunKwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research