Snail induces epithelial cell extrusion by regulating RhoA contractile signalling and cell–matrix adhesion

Kenneth Wee, Soroor Hediyeh-Zadeh, Kinga Duszyc, Suzie Verma, Bageshri N. Nanavati, Satyajeet Khare, Amrita Varma, Roger J. Daly, Alpha S. Yap, Melissa J. Davis, Srikanth Budnar

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Cell extrusion is a morphogenetic process that is implicated in epithelial homeostasis and elicited by stimuli ranging from apoptosis to oncogenic transformation. To explore whether the morphogenetic transcription factor Snail (SNAI1) induces extrusion, we inducibly expressed a stabilized Snail6SA transgene in confluent MCF-7 monolayers. When expressed in small clusters (less than three cells) within otherwise wild-type confluent monolayers, Snail6SA expression induced apical cell extrusion. In contrast, larger clusters or homogenous cultures of Snail6SA cells did not show enhanced apical extrusion, but eventually displayed sporadic basal delamination. Transcriptomic profiling revealed that Snail6SA did not substantively alter the balance of epithelial and mesenchymal genes. However, we identified a transcriptional network that led to upregulated RhoA signalling and cortical contractility in cells expressing Snail6SA. Enhanced contractility was necessary, but not sufficient, to drive extrusion, suggesting that Snail collaborates with other factors. Indeed, we found that the transcriptional downregulation of cell–matrix adhesion cooperates with contractility to mediate basal delamination. This provides a pathway for Snail to influence epithelial morphogenesis independently of classic epithelial-to-mesenchymal transition.

Original languageEnglish
Article numberjcs235622
Number of pages12
JournalJournal of Cell Science
Volume133
Issue number13
DOIs
Publication statusPublished - Jul 2020

Keywords

  • Adhesion
  • Contractility
  • Delamination
  • ECM
  • Extrusion
  • RhoA
  • Snail

Cite this