Abstract
The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of ∼50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of ∼400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates) [1], Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, ξ = 10.6 Å of the network and the other is the size of inhomogeneities = 21.4 Å. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60°C (ξ = 50 Å, ζ = 113 Å) and 5% (w/v) gel at 28°C (ξ = 47 Å, ζ = 115 Å) in aqueous phase [2] indicating smaller length scales in coacervate as compared to sol and gel.
Original language | English |
---|---|
Pages (from-to) | 271-276 |
Number of pages | 6 |
Journal | Pramana – Journal of Physics |
Volume | 63 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Jan 2004 |
Externally published | Yes |
Keywords
- Coacervates
- Gelatin
- Light scattering
- Neutron scattering