Slow sinusoidal tilt movements demonstrate the contribution to orthostatic tolerance of cerebrospinal fluid movement to and from the spinal dural space

Wim J. Stok, John M. Karemaker, Janneke Berecki-Gisolf, Rogier V. Immink, Johannes J. van Lieshout

Research output: Contribution to journalArticleResearchpeer-review

2 Citations (Scopus)


Standing up elicits a host of cardiovascular changes which all affect the cerebral circulation. Lowered mean arterial blood pressure (ABP) at brain level, change in the cerebral venous outflow path, lowered end-tidal PCO2 (PETCO2), and intracranial pressure (ICP) modify cerebral blood flow (CBF). The question we undertook to answer is whether gravity-induced blood pressure (BP) changes are compensated in CBF with the same dynamics as are spontaneous or induced ABP changes in a stable position. Twenty-two healthy subjects (18/4 m/f, 40 ± 8 years) were subjected to 30° and 70° head-up tilt (HUT) and sinusoidal tilts (SinTilt, 0°↨60° around 30° at 2.5–10 tilts/min). Additionally, at those three tilt levels, they performed paced breathing at 6–15 breaths/min to induce larger than spontaneous cardiovascular oscillations. We measured continuous finger BP and cerebral blood flow velocity (CBFv) in the middle cerebral artery by transcranial Doppler to compute transfer functions (TFs) from ABP- to CBFv oscillations. SinTilt induces the largest ABP oscillations at brain level with CBFv gains strikingly lower than for paced breathing or spontaneous variations. This would imply better autoregulation for dynamic gravitational changes. We demonstrate in a mathematical model that this difference is explained by ICP changes due to movement of cerebrospinal fluid (CSF) into and out of the spinal dural sack. Dynamic cerebrovascular autoregulation seems insensitive to how BP oscillations originate if the effect of ICP is factored in. CSF-movement in-and-out of the spinal dural space contributes importantly to orthostatic tolerance by its effect on cerebral perfusion pressure.

Original languageEnglish
Article numbere14001
Number of pages18
JournalPhysiological Reports
Issue number4
Publication statusPublished - Feb 2019
Externally publishedYes


  • Body position
  • cerebrospinal fluid
  • cerebrovascular autoregulation
  • computer model
  • orthostasis

Cite this