TY - JOUR
T1 - Sleep and Alcohol Use Patterns During Federal Holidays and Daylight Saving Time Transitions in the United States
AU - Heacock, Rachel M.
AU - Capodilupo, Emily R.
AU - Czeisler, Mark E.
AU - Weaver, Matthew D.
AU - Czeisler, Charles A.
AU - Howard, Mark E.
AU - Rajaratnam, Shantha M.W.
N1 - Funding Information:
Two of the authors (EC, RH) are affiliated to the commercial company WHOOP Inc., however this does not alter the authors’ adherence to the Policies and Publication Ethics of Frontiers in Physiology. MÉC received consultant payments from Pharmaceuticals and institutional grants paid to Monash University from the CDC Foundation, with funding provided by BNY Mellon, and from WHOOP, Inc., as well as an institutional gift to Monash University from Hopelab, Inc. MaW received consultant payments from the National Sleep Foundation and the University of Pittsburgh. CC reports grants/contracts to BWH from Dayzz Live Well, Delta Airlines, Jazz Pharma, Puget Sound Pilots, Regeneron Pharmaceuticals/Sanofi; is/was paid consultant/speaker for Institute of Digital Media and Child Development, Klarman Family Foundation, National Council for Mental Wellbeing, National Sleep Foundation, Physician’s Seal, SRS Foundation, Tencent, Teva Pharma Australia, With Deep, and Vanda Pharmaceuticals; holds an equity interest in Vanda Pharmaceuticals and With Deep Inc.; received travel support from Aspen Brain Institute, Bloomage International, Dr. Stanley Ho Medical Development Foundation, German National Academy of Sciences, National Safety Council, National Sleep Foundation, Stanford Medical School, and Vanda; receives research/education gifts through BWH from Arbor Pharmaceuticals, Avadel Pharmaceuticals, Bryte, Alexandra Drane, DR Capital Ltd, Eisai, Harmony Biosciences, Jazz Pharmaceuticals, Johnson and Johnson, Mary Ann & Stanley Snider via Combined Jewish Philanthropies, NeuroCare, Inc., Optum, Philips Respironics, Regeneron, Regional Home Care, ResMed, San Francisco Bar Pilots, Sanofi, Schneider, Simmons, Sleep Cycle. Sleep Number, Sysco, Teva Pharmaceuticals, Vanda; is/was an expert witness in legal cases, including those involving Advanced Power Technologies, Aegis Chemical Solutions, Amtrak; Casper Sleep Inc., C and J Energy Services, Catapult Energy Services Group, Covenant Testing Technologies, Dallas Police Association, Enterprise Rent-A-Car, Espinal Trucking/Eagle Transport Group/Steel Warehouse Inc., FedEx, Greyhound, PAR Electrical Contractors, Product and Logistics Services LLC/Schlumberger Technology, Puckett EMS, Puget Sound Pilots, Union Pacific Railroad, UPS, and Vanda; royalties from Philips Respironics for the Actiwatch-2 and Actiwatch Spectrum devices. CC’s interests were reviewed and are managed by the BWH and MGB in accordance with their conflict of interest policies. SR reports institutional grants paid to Monash University from the CDC Foundation, with funding provided by BNY Mellon, and from WHOOP, Inc.; research grants and consultancy fees from the Cooperative Research Centre for Alertness, Safety and Productivity; and institutional consulting fees paid to Monash University from Teva Pharma Australia, Teva Pharma Ukraine, Vanda Pharmaceuticals, Circadian Therapeutics, BHP Billiton, and Herbert Smith Freehills.
Funding Information:
The authors received no specific funding for this work; however, EC and Rachel M. Heacock are affiliated to the commercial company WHOOP, Inc. which provided support in the form of salaries but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Mark É. Czeisler was supported in part by a 2020 to 2021 Australian-American Fulbright Scholarship, with funding from The Kinghorn Foundation. Charles A. Czeisler was supported in part by National Institute for Occupational Safety and Health Grant R01OH011773, National Institute on Aging Grant P01AG009975, and National Heart, Lung, and Blood Institute Grants 1R01HL148704 and R56HL151637, and by an endowed professorship given to Harvard in 2004 by Cephalon, Inc.
Funding Information:
M.É.C. gratefully acknowledges funding by The Kinghorn Foundation through a 2020 to 2021 Australian-American Fulbright Scholarship.
Publisher Copyright:
Copyright © 2022 Heacock, Capodilupo, Czeisler, Weaver, Czeisler, Howard and Rajaratnam.
PY - 2022/7/11
Y1 - 2022/7/11
N2 - We conducted a retrospective observational study using remote wearable and mobile application data to evaluate whether US public holidays or Daylight Saving Time transitions were associated with significant changes in sleep behaviors, including sleep duration, sleep onset and offset, and the consistency of sleep timing, as well as changes in the point prevalence of alcohol use. These metrics were analyzed using objective, high resolution sleep-wake data (10,350,760 sleep episodes) and 5,777,008 survey responses of 24,250 US subscribers (74.5% male; mean age of 37.6 ± 9.8 years) to the wrist-worn biometric device platform, WHOOP (Boston, Massachusetts, United States), who were active users during 1 May 2020, through 1 May 2021. Compared to baseline, statistically significant differences in sleep and alcohol measures were found on most DST transitions, US public holidays, and their eves. For example, New Year’s Eve corresponded with a sleep consistency decrease of 13.8 ± 0.3%, a sleep onset delay of 88.9 ± 3.2 min (00:01 vs. 22:33 baseline) later, a sleep offset delay of 78.1 ± 3.1 min (07:56 vs. 06:39), and an increase in the prevalence of alcohol consumption, with more than twice as many participants having reported alcohol consumption [+138.0% ± 6.7 (74.2% vs. 31.2%)] compared to baseline. In this analysis of a non-random sample of mostly male subscribers conducted during the COVID-19 pandemic, the majority of US public holidays and holiday eves were associated with sample-level increases in sleep duration, decreases in sleep consistency, later sleep onset and offset, and increases in the prevalence of alcohol consumption. Future work would be warranted to explore the generalizability of these findings and their public health implications, including in more representative samples and over longer time intervals.
AB - We conducted a retrospective observational study using remote wearable and mobile application data to evaluate whether US public holidays or Daylight Saving Time transitions were associated with significant changes in sleep behaviors, including sleep duration, sleep onset and offset, and the consistency of sleep timing, as well as changes in the point prevalence of alcohol use. These metrics were analyzed using objective, high resolution sleep-wake data (10,350,760 sleep episodes) and 5,777,008 survey responses of 24,250 US subscribers (74.5% male; mean age of 37.6 ± 9.8 years) to the wrist-worn biometric device platform, WHOOP (Boston, Massachusetts, United States), who were active users during 1 May 2020, through 1 May 2021. Compared to baseline, statistically significant differences in sleep and alcohol measures were found on most DST transitions, US public holidays, and their eves. For example, New Year’s Eve corresponded with a sleep consistency decrease of 13.8 ± 0.3%, a sleep onset delay of 88.9 ± 3.2 min (00:01 vs. 22:33 baseline) later, a sleep offset delay of 78.1 ± 3.1 min (07:56 vs. 06:39), and an increase in the prevalence of alcohol consumption, with more than twice as many participants having reported alcohol consumption [+138.0% ± 6.7 (74.2% vs. 31.2%)] compared to baseline. In this analysis of a non-random sample of mostly male subscribers conducted during the COVID-19 pandemic, the majority of US public holidays and holiday eves were associated with sample-level increases in sleep duration, decreases in sleep consistency, later sleep onset and offset, and increases in the prevalence of alcohol consumption. Future work would be warranted to explore the generalizability of these findings and their public health implications, including in more representative samples and over longer time intervals.
KW - daylight saving time
KW - epidemiology
KW - holidays
KW - sleep consistency
KW - sleep duration
KW - sleep timing
KW - substance use
KW - wearable devices
UR - http://www.scopus.com/inward/record.url?scp=85134706678&partnerID=8YFLogxK
U2 - 10.3389/fphys.2022.884154
DO - 10.3389/fphys.2022.884154
M3 - Article
C2 - 35899022
AN - SCOPUS:85134706678
VL - 13
JO - Frontiers in Physiology
JF - Frontiers in Physiology
SN - 1664-042X
M1 - 884154
ER -