SLADE: A method for designing human-centred Learning Analytics Systems

Riordan Alfredo, Vanessa Echeverria, Yueqiao Jin, Zachari Swiecki, Dragan Gašević, Roberto Martinez-Maldonado

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

8 Citations (Scopus)

Abstract

There is a growing interest in creating Learning Analytics (LA) systems that incorporate student perspectives. Yet, many LA systems still lean towards a technology-centric approach, potentially overlooking human values and the necessity of human oversight in automation. Although some recent LA studies have adopted a human-centred design stance, there is still limited research on establishing safe, reliable, and trustworthy systems during the early stages of LA design. Drawing from a newly proposed framework for human-centred artificial intelligence, we introduce SLADE, a method for ideating and identifying features of human-centred LA systems that balance human control and computer automation. We illustrate SLADE's application in designing LA systems to support collaborative learning in healthcare. Twenty-one third-year students participated in design sessions through SLADE's four steps: i) identifying challenges and corresponding LA systems; ii) prioritising these LA systems; iii) ideating human control and automation features; and iv) refining features emphasising safety, reliability, and trustworthiness. Our results demonstrate SLADE's potential to assist researchers and designers in: 1) aligning authentic student challenges with LA systems through both divergent ideation and convergent prioritisation; 2) understanding students' perspectives on personal agency and delegation to teachers; and 3) fostering discussions about the safety, reliability, and trustworthiness of LA solutions.

Original languageEnglish
Title of host publicationLAK 2024 Conference Proceedings - The Fourteenth International Conference on Learning Analytics & Knowledge
EditorsSrecko Joksimovic, Andrew Zamecnik
Place of PublicationNew York NY USA
PublisherAssociation for Computing Machinery (ACM)
Pages24-34
Number of pages11
ISBN (Electronic)9798400716188
DOIs
Publication statusPublished - 2024
EventInternational Learning Analytics & Knowledge Conference 2024 - Kyoto, Japan
Duration: 18 Mar 202422 Mar 2024
Conference number: 14th
https://dl.acm.org/doi/proceedings/10.1145/3636555 (Conference Proceedings)
https://www.solaresearch.org/events/lak/lak24/
https://ceur-ws.org/Vol-3667/ (LAK 2024 Workshop Proceedings)

Conference

ConferenceInternational Learning Analytics & Knowledge Conference 2024
Abbreviated titleLAK 2024
Country/TerritoryJapan
CityKyoto
Period18/03/2422/03/24
Internet address

Keywords

  • Design Thinking
  • Double Diamond
  • Human-centered AI
  • Human-centered learning analytics

Cite this