Skeleton-aware 3D human shape reconstruction from point clouds

Haiyong Jiang, Jianfei Cai, Jianmin Zheng

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

62 Citations (Scopus)

Abstract

This work addresses the problem of 3D human shape reconstruction from point clouds. Considering that human shapes are of high dimensions and with large articulations, we adopt the state-of-the-art parametric human body model, SMPL, to reduce the dimension of learning space and generate smooth and valid reconstruction. However, SMPL parameters, especially pose parameters, are not easy to learn because of ambiguity and locality of the pose representation. Thus, we propose to incorporate skeleton awareness into the deep learning based regression of SMPL parameters for 3D human shape reconstruction. Our basic idea is to use the state-of-the-art technique PointNet++ to extract point features, and then map point features to skeleton joint features and finally to SMPL parameters for the reconstruction from point clouds. Particularly, we develop an end-to-end framework, where we propose a graph aggregation module to augment PointNet++ by extracting better point features, an attention module to better map unordered point features into ordered skeleton joint features, and a skeleton graph module to extract better joint features for SMPL parameter regression. The entire framework network is first trained in an end-to-end manner on synthesized dataset, and then online fine-tuned on unseen dataset with unsupervised loss to bridges gaps between training and testing. The experiments on multiple datasets show that our method is on par with the state-of-the-art solution.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
EditorsIn So Kweon, Nikos Paragios, Ming-Hsuan Yang, Svetlana Lazebnik
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages5430-5440
Number of pages11
ISBN (Electronic)9781728148038
ISBN (Print)9781728148045
DOIs
Publication statusPublished - 2019
Externally publishedYes
EventIEEE International Conference on Computer Vision 2019 - Seoul, Korea, South
Duration: 27 Oct 20192 Nov 2019
Conference number: 17th
http://iccv2019.thecvf.com/
https://ieeexplore.ieee.org/xpl/conhome/8972782/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
PublisherIEEE, Institute of Electrical and Electronics Engineers
Volume2019-October
ISSN (Print)1550-5499
ISSN (Electronic)2380-7504

Conference

ConferenceIEEE International Conference on Computer Vision 2019
Abbreviated titleICCV 2019
Country/TerritoryKorea, South
CitySeoul
Period27/10/192/11/19
Internet address

Cite this