Site-selective solid-phase synthesis of a CCR5 sulfopeptide library to interrogate HIV binding and entry

Xuyu Liu, Lara R Malins, Michael John Roche, Jasminka Sterjovski, Renee Duncan, Mary L Garcia, Nadine Barnes, David Anderson, Martin Jeremy Stone, Paul R Gorry, Richard James Payne

Research output: Contribution to journalArticleResearchpeer-review

16 Citations (Scopus)

Abstract

Tyrosine (Tyr) sulfation is a common posttranslational modification that is implicated in a variety of important biological processes, including the fusion and entry of human immunodeficiency virus type-1 (HIV-1). A number of sulfated Tyr (sTyr) residues on the N-terminus of the CCR5 chemokine receptor are involved in a crucial binding interaction with the gp120 HIV-1 envelope glycoprotein. Despite the established importance of these sTyr residues, the exact structural and functional role of this post-translational modification in HIV-1 infection is not fully understood. Detailed biological studies are hindered in part by the difficulty in accessing homogeneous sulfopeptides and sulfoproteins through biological expression and established synthetic techniques. Herein we describe an efficient approach to the synthesis of sulfopeptides bearing discrete sulfation patterns through the divergent, site-selective incorporation of sTyr residues on solid support. By employing three orthogonally protected Tyr building blocks and a solid-phase sulfation protocol, we demonstrate the synthesis of a library of target N-terminal CCR5(2-22) sulfoforms bearing discrete and di fferential sulfation at Tyr10, Tyr14, and Tyr15, from a single resin-bound intermediate. We demonstrate the importance of distinct sites of Tyr sulfation in binding gp120 through a competitive binding assay between the synthetic CCR5 sulfopeptides and an anti-gp120 monoclonal antibody. These studies revealed a critical role of sulfation at Tyr14 for binding and a possible additional role for sulfation at Tyr10. N-terminal CCR5 variants bearing a sTyr residue at position 14 were also found to complement viral entry into cells expressing an N-terminally truncated CCR5 receptor.
Original languageEnglish
Pages (from-to)2074 - 2081
Number of pages8
JournalACS Chemical Biology
Volume9
Issue number9
DOIs
Publication statusPublished - 2014

Cite this